

FIELD INVESTIGATION TEAM ACTIVITIES AT UNCONTROLLED HAZARDOUS SUBSTANCES FACILITIES — ZONE I

NUS CORPORATION SUPERFUND DIVISION

SITE INSPECTION OF ST. ELIZABETH'S HOSPITAL PREPARED UNDER

TDD NO. F3-9005-31 EPA NO. DC-14 CONTRACT NO. 68-01-7346

FOR THE

HAZARDOUS SITE CONTROL DIVISION
U.S. ENVIRONMENTAL PROTECTION AGENCY

FEBRUAR 27, 1991

NUS CORPORATION SUPERFUND DIVISION

SUBMITTED BY

REVIEWED BY

APPROVED BY

LINDA CIARLETTA
PROJECT MANAGER

PAUL PERSING SECTION SUPERVISOR

GARTH GLENN REGIONAL MANAGER, FIT 3

Disclaimer:

This report has been prepared for the U.S. Environmental Protection Agency (EPA) under Contract No. 68-01-7346. The content does not necessarily reflect the views and policies of EPA nor does the mention of trade names or common products constitute endorsement by EPA.

Site Name: St. Elizabeth's Hospital TDD No.: F3-9005-31

TABLE OF CONTENTS

1.0 INTRODUCTION 1-1 1.1 AUTHORIZATION 1-1 1.2 SCOPE OF WORK 1-1 1.2 SCOPE OF WORK 1-1 1.3 SUMMARY 1-1 1.0 THE SITE 2-1 2.0 THE SITE 2-1 2.1 LOCATION 2-1 2.2 SITE LAYOUT 2-1 2.3 OWNERSHIP HISTORY 2-1 2.4 SITE USE HISTORY 2-1 2.5 PERMIT AND REGULATORY ACTION HISTORY 2-5 2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-3 3.5 LAND USE 3-1 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTUPS 4-1 5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-5 5-5 PHOTOGRAPH LOG 5-5 5-6 EPA SITE OBSERVATIONS 5-5 5-7 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 7-2 8.2	SECTION		<u>PAGE</u>
1.1 AUTHORIZATION 1-1 1.2 SCOPE OF WORK 1-1 1.3 SUMMARY 1-1 1.3 SUMMARY 1-1 1.4 SUMMARY 1-1 1.5 SUMMARY 1-1 1.6 O THE SITE 2-1 2.1 LOCATION 2-1 2.2 SITE LAYOUT 2-1 2.3 OWNERSHIP HISTORY 2-1 2.4 SITE USE HISTORY 2-2 2.5 PERMIT AND REGULATORY ACTION HISTORY 2-5 2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-3 3.5 LAND USE 3-1 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-1 4.0 WASTE TYPES AND QUANTIFES 3-1 5.0 FIELD TRIP REPORTY 3-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-5 5.4 SITE OBSERWATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1	1.0	INTRODUCTION	1-1
1.2 SCOPE OF WORK 1.3 SUMMARY 1-1 2.0 THE SITE 2.1 LOCATION 2.1 2.2 SITE LAYOUT 2.3 OWNERSHIP HISTORY 2.4 SITE USE HISTORY 2.5 PERMIT AND REGULATORY ACTION HISTORY 2.6 REMEDIAL ACTION TO DATE 2.7 SURFACE WATERS 3.1 WATER SUPPLY 3.2 SURFACE WATERS 3.3 HYDROGEOLOGY 3.4 CLIMATE AND METEOROLOGY 3.5 LAND USE 3.6 POPULATION DISTRIBUTION 3.7 CRITICAL ENVIRONMENTS 4.0 WASTE TYPES AND QUANTIFIES 5.1 SUMMARY 5.1 SUMMARY 5.2 PERSONS CONTACTED 5.3 SAMPLE LOG 5.4 SITE DESERVATIONS 5.5 PHOTOGEAR LOG 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6.1 SAMPLE DATA SUMMARY 7.1 SAMPLE DATA SUMMARY 7.2 QUALITY ASSURANCE REVIEW 8.0 TOXICOLOGICAL EVALUATION 8.1 SUMMARY 8.1	1.1		
1-1			
2.1 LOCATION 2-1 2.2 SITE LAYOUT 2-1 2.3 OWNERSHIP HISTORY 2-4 2.4 SITE USE HISTORY 2-4 2.5 PERMIT AND REGULATORY ACTION HISTORY 2-5 2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-3 3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTUPS 4-1 5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTERS 5-1 5.3 SAMPLE LOG 5-5 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 7-1 6.0 REFERENCES			
2.1 LOCATION 2-1 2.2 SITE LAYOUT 2-1 2.3 OWNERSHIP HISTORY 2-4 2.4 SITE USE HISTORY 2-4 2.5 PERMIT AND REGULATORY ACTION HISTORY 2-5 2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-3 3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTUPE 4-1 5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTER 5-1 5.3 SAMPLE LOG 5-5 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 7-1 6.0 REFERENCES F			
2.2 SITE LAYOUT 2-1 2.3 OWNERSHIP HISTORY 2-4 2.4 SITE USE HISTORY 2-5 2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-9 3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTARE 4-1 5.0 FIELD TRIP REPORTY 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 S			
2.3 OWNERSHIP HISTORY 2-4 2.4 SITE USE HISTORY 2-5 2.5 PERMIT AND REGULATORY ACTION HISTORY 2-5 2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-9 3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTARS 4-1 5.0 FIELD TRIP REPORTY 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTER 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGERAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1	= '		
2.4 SITE USE HISTORY 2-4 2.5 PERMIT AND REGULATORY ACTION HISTORY 2-5 2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-9 3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTIFE 4-1 5.0 FIELD TRIP REPORTY 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGERAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1			
2.5 PERMIT AND REGULATORY ACTION HISTORY 2-5 2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-9 3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTAGES 4-1 5.0 FIELD TRIP REPORTY 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2			
2.6 REMEDIAL ACTION TO DATE 2-6 3.0 ENVIRONMENTAL SETTING 3-1 3.1 WATER SUPPLY 3-1 3.2 SURFACE WATERS 3-3 3.3 HYDROGEOLOGY 3-3 3.4 CLIMATE AND METEOROLOGY 3-9 3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTIFIES 4-1 5.0 FIELD TRIP REPORTY 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1			
3.0 ENVIRONMENTAL SETTING 3.1 WATER SUPPLY 3.1 3.1 WATER SUPPLY 3.2 SURFACE WATERS 3.3 HYDROGEOLOGY 3.3 3.3 3.4 CLIMATE AND METEOROLOGY 3.5 LAND USE 3.11 3.6 POPULATION DISTRIBUTION 3.7 CRITICAL ENVIRONMENTS 3.11 4.0 WASTE TYPES AND QUARTITIES 4.1 5.0 FIELD TRIP REPORT 5.1 SUMMARY 5.1 SUMMARY 5.2 PERSONS CONTACTED 5.3 SAMPLE LOG 5.4 SITE OBSERVATIONS 5.5 PHOTOGERAPH LOG 5.6 EPA SITE INSPECTION FORM 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6.1 7.0 LABORATORY DATA 7.1 SAMPLE DATA SUMMARY 7.1 7.2 QUALITY ASSURANCE REVIEW 7.2 8.0 TOXICOLOGICAL EVALUATION 8.1			
3.2 SURFACE WATERS 3.3 HYDROGEOLOGY 3.3 3.4 CLIMATE AND METEOROLOGY 3.5 LAND USE 3.6 POPULATION DISTRIBUTION 3.7 CRITICAL ENVIRONMENTS 3.11 3.7 CRITICAL ENVIRONMENTS 3.11 4.0 WASTE TYPES AND QUANTITIES 4.1 5.0 FIELD TRIP REPORTY 5.1 SUMMARY 5.2 PERSONS CONTACTES 5.3 SAMPLE LOG 5.4 SITE OBSERVATIONS 5.5 PHOTOGRAPH LOG 5.6 EPA SITE INSPECTION FORM 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6.1 7.0 LABORATORY DATA 7.1 7.1 SAMPLE DATA SUMMARY 7.2 QUALITY ASSURANCE REVIEW 7.2 8.0 TOXICOLOGICAL EVALUATION 8.1	2.6	REMEDIAL ACTION TO DATE	2-6
3.2 SURFACE WATERS 3.3 HYDROGEOLOGY 3.3 3.3 3.4 CLIMATE AND METEOROLOGY 3.5 LAND USE 3.6 POPULATION DISTRIBUTION 3.7 CRITICAL ENVIRONMENTS 3.11 3.7 CRITICAL ENVIRONMENTS 3.11 4.0 WASTE TYPES AND QUANTIFIES 4.1 5.0 FIELD TRIP REPORTY 5.1 SUMMARY 5.2 PERSONS CONTACTED 5.3 SAMPLE LOG 5.4 SITE OBSERVATIONS 5.5 PHOTOGRAPH LOG 5.6 EPA SITE INSPECTION FORM 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6.1 7.0 LABORATORY DATA 7.1 SAMPLE DATA SUMMARY 7.2 QUALITY ASSURANCE REVIEW 7.2 8.0 TOXICOLOGICAL EVALUATION 8.1	3.0	ENVIRONMENTAL SETTING	3-1
3.2 SURFACE WATERS 3.3 HYDROGEOLOGY 3.3 3.4 CLIMATE AND METEOROLOGY 3.5 LAND USE 3.6 POPULATION DISTRIBUTION 3.7 CRITICAL ENVIRONMENTS 3.11 3.7 CRITICAL ENVIRONMENTS 3.11 4.0 WASTE TYPES AND QUANTITIES 4.1 5.0 FIELD TRIP REPORTY 5.1 SUMMARY 5.2 PERSONS CONTACTES 5.3 SAMPLE LOG 5.4 SITE OBSERVATIONS 5.5 PHOTOGRAPH LOG 5.6 EPA SITE INSPECTION FORM 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6.1 7.0 LABORATORY DATA 7.1 7.1 SAMPLE DATA SUMMARY 7.2 QUALITY ASSURANCE REVIEW 7.2 8.0 TOXICOLOGICAL EVALUATION 8.1	3.1	WATER SUPPLY	3-1
3.5 3.6 3.6 POPULATION DISTRIBUTION 3.7 CRITICAL ENVIRONMENTS 3-11 3.7 4.0 WASTE TYPES AND QUANTIFIES 4-1 5.0 FIELD TRIP REPORT 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5.3 SAMPLE LOG 5.4 SITE OBSERWATIONS 5.5 PHOTOGRAPH LOG 5.6 EPA SITE INSPECTION FORM 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7.1 SAMPLE DATA SUMMARY 7.1 7.2 QUALITY ASSURANCE REVIEW 7.2 8.0 TOXICOLOGICAL EVALUATION 8-1	3.2	SURFACE WATERS	3-3
3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTIMES 4-1 5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERWATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 6 EPA SITE INSPECTION FORM 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1		HYDROGEOLOGY	3-3
3.5 LAND USE 3-11 3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTURES 4-1 5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1		CLIMATE AND METEOROLOGY	3-9
3.6 POPULATION DISTRIBUTION 3-11 3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTITIES 4-1 5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	=	LAND USE	3-11
3.7 CRITICAL ENVIRONMENTS 3-11 4.0 WASTE TYPES AND QUANTITIES 4-1 5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1			
4.0 WASTE TYPES AND QUANTIFES 4-1 5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTES 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	•		-
5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	U .,		
5.0 FIELD TRIP REPORT 5-1 5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	4.0	WASTE TYPES AND QUANTIES	4-1
5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 7.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	•	<u> </u>	
5.1 SUMMARY 5-1 5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 7.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	5.0	FIELD TRIP REPORT	5-1
5.2 PERSONS CONTACTED 5-1 5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 7.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1		SUMMARY	5-1
5.3 SAMPLE LOG 5-2 5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 7.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	- · ·		
5.4 SITE OBSERVATIONS 5-5 5.5 PHOTOGRAPH LOG 5-5 5.6 EPA SITE INSPECTION FORM 6-1 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1			
5.5 PHOTOGRAPH LOG 5.6 EPA SITE INSPECTION FORM 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1			
5.6 EPA SITE INSPECTION FORM 6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0 6-1 7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1			
7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	=	▼ _v · · · · · · · · · · · · · · · · · · ·	
7.0 LABORATORY DATA 7-1 7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	<i>.</i>	DESCRIPTION OF CONTRACT A TURQUOUS A	c 1
7.1 SAMPLE DATA SUMMARY 7-1 7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	6.0	REFERENCES FOR SECTIONS 1.0 THROUGH 5.0	0-1
7.2 QUALITY ASSURANCE REVIEW 7-2 8.0 TOXICOLOGICAL EVALUATION 8-1 8.1 SUMMARY 8-1	7.0	LABORATORY DATA	7-1
8.0 TOXICOLOGICAL EVALUATION	7.1	SAMPLE DATA SUMMARY	7-1
8.1 SUMMARY 8-1	7.2	QUALITY ASSURANCE REVIEW	7-2
8.1 SUMMARY 8-1	8.0	TOXICOLOGICAL EVALUATION	8-1
	8.2	SUPPORT DATA	

Site Name: St. Elizabeth's Hospital TDD No.: F3-9005-31

APPENDICES

Α	1.0 QUALITY ASSURANCE SUPPORT DOCUMENTATION	A-1
В	1.0 LABORATORY DATA SHEETS	B-1
С	1.0 OPERATING LICENSES FOR LANDFILL	C -1
D	1.0 1984 FLY ASH SAMPLING RESULTS	D-1
Ε	1.0 REPORTS AND SAMPLING RESULTS FROM 1985 ON-SITE SAMPLING	E-1
F	1.0 1988 FLY ASH SAMPLING RESOLTS	F-1
G	1.0 PRINCE GEORGE'S COUNTY WELL RECORDS	G-1
PLATES		
1	FOUR-MILE-RADIUS MAP	

SECTION 1

TDD No.: <u>F3-9005-31</u>

1.0 INTRODUCTION

1.1 <u>Authorization</u>

NUS Corporation performed this work under Environmental Protection Agency Contract No. 68-01-7346. This specific report was prepared in accordance with Technical Directive Document No. F3-9005-31 for the St. Elizabeth's Hospital site, located in Washington, D.C.

1.2 Scope of Work

NUS FIT 3 was tasked to conduct a site inspection of the subject site.

1.3 Summary

St. Elizabeth's Hospital is located along Martin uther King, Jr. Avenue in southwestern Washington, D.C. Since 1977, various portions of the hospital property have been used by the District of Columbia Solid Waste Disposal Division of the Department of Public Works as permitted landfill areas. Fill material included storm sewer cleanings, street sweepings, road construction debris (including milled asphalt), and incinerator fly ash residue.

The subject landfill area is approximately 20 acres in size, with an average depth of 40 feet. This landfill area was in operation from October 1982 to October 1989. Three areas within the subject landfill were closed and capped in 1983, 1987, and 1988. The remaining fill area was closed and capped in October 1989; use of the landfill was discontinued at this time.

In March 1985, by request of the EPA Region III Waste Management Division, because of the incinerator fly ash residue that was deposited on site, the Central Regional Laboratory (CRL) performed comprehensive sampling of the fill materials. Extensive dioxin sampling was performed, and trace but negligible levels of chlorinated dioxins were revealed. Sampling in November 1985 revealed elevated levels of heavy metals, including lead and cadmium, in soil and ash samples. Some low levels of organic contaminants were also revealed in leachate and sediment samples. Fly ash samples obtained in December 1988 were found to be EP toxic for lead and cadmium. No remedial action has taken place to date.

TDD No.: <u>F3-9005-31</u>

Surface water and groundwater are the sources of potable water in the study area. Five public water supply companies provide water to a major portion of the population within the three-mile radius. These companies obtain water from various surface water intakes, all of which are either upstream of the site or outside the surface drainage pathway of the site. The Colebrooke Development utilizes a well approximately 2.25 miles from the site for public water and serves about 3,337 people. Three domestic wells have been identified within the study area; the closest well is 2.5 miles south of the site. The total population dependent on groundwater within the 3-mile radius is 3,348 people.

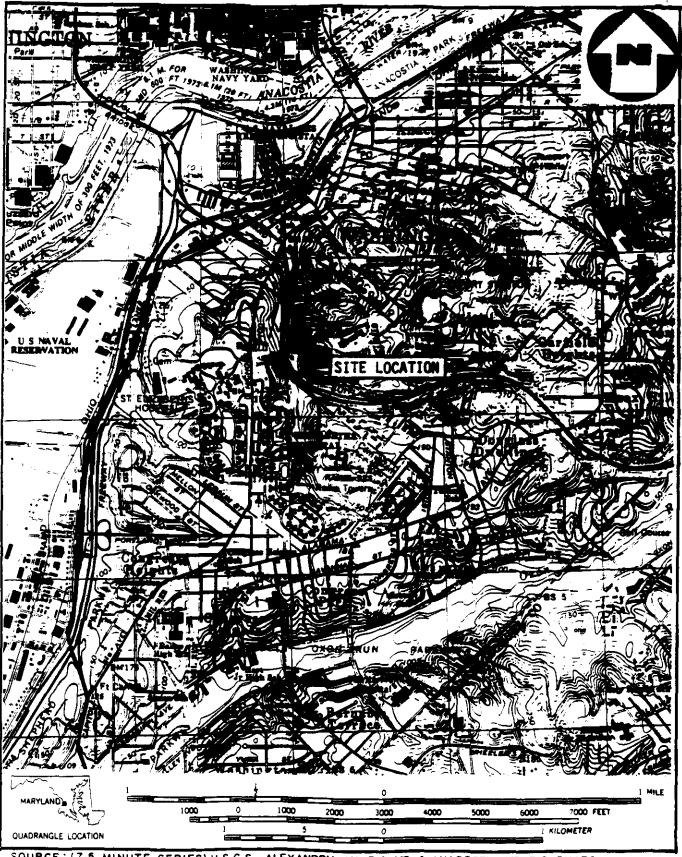
FIT 3 conducted a site inspection at St. Elizabeth's Hospital on June 27, 1990. Activities included sampling on-site soils, sediment, and surface water and off-site sediment and surface water. A detailed Quality Assurance Review and a Toxicological Evaluation of the sample results from this inspection can be found in sections 7.0 and 8.0, respectively.

SECTION 2

TDD No.: <u>F3-9005-31</u>

2.0 THE SITE

2.1 Location


The St. Elizabeth's Hospital site is located at 2700 Martin Luther King, Jr. Avenue in Washington, D. C. (see figure 2.1, page 2-2). The coordinates of the site are north 38° 51′ 05″ latitude and west 76° 59′ 35″ longitude. The site may be located on the United States Geological Survey (U.S.G.S.) Anacostia, D. C. - Maryland quadrangle 7.5 minute series topographic map by measuring one inch east and 4.5 inches south from the northwestern corner of the map.1

2.2 Site Layout

The St. Elizabeth's Hospital landfill is located in the northeastern section of the hospital property. It is about 20 acres in size and has an average depth of approximately 40 feet. The landfill is oriented in southward to northward direction and is bordered on the west by Martin Luther King, Jr. Avenue and on the east by Suitland Parkway (see figure 2.2, page 2-3). Access to the site is restricted by a six-foot fence with two locked gates. Entrance date no 3 to the fenced hospital property is in the southwestern corner of the site. A second locked access gate is on the northern edge of the property on a dirt access road. A third gate, which is usually open, is inside the entranceway from the locked gate. 1.2,3,4,5,6

Dunbar Road runs northwardly from Martin Luther King, Jr. Avenue; the old dirt truck access road to the fill area is off Dunbar Road. A pathway is located between Dunbar Road and the dirt access road. 1,2,4

The fenced hospital property includes several major features. Two areas with hospital buildings and parking lots can be found within the fencing; one is in the northwestern corner of the property and the other is in the southwestern corner. Office trailers are located directly south of the northwestern hospital building area. Hospital maintenance garages are located directly north of the southwestern hospital building area. A motor pool parking lot is situated between the maintenance garages and the office trailers. 1,2,3,4

SOURCE: (7.5 MINUTE SERIES) U.S.G.S. ALEXANDRIA, VA.-D.C.-MD. & ANACOSTIA, MD.-D.C. QUADS

SITE LOCATION MAP

ST. ELIZABETHS HOSPITAL SITE, WASHINGTON, D.C.

SCALE 1: 24000

FIGURE 2.1

(NO SCALE)

2-3

ST. ELIZABETHS HOSPITAL SITE, SITE SKETCH WASHINGTON D.C.

MARTIN LUTHER KING JR. AVENUE ENTRANCE GATE #3 MOTOR POOL PARKING HOSPITAL BUILDINGS

& PARKING LOTS HOSPITAL BUILDINGS & PARKING LOTS WOODED RECENTLY GLOSED FUL AREA FENCE CCESS ROAD OATE OATE UNDERGROUND PRPE FORMER FILL AREA

TDD No.: F3-9005-31

The landfill comprises the major portion of the fenced hospital property. There are four fill areas within the landfill. The recently closed fill area is the most northern. The oldest fill area is southwest of the recently closed fill area and east of the motor pool parking lot. The two former fill areas form the southernmost section of the landfill. A steeply sloped ravine divides these two fill areas. A dirt access road enters the southern fill areas from a hospital parking lot near the southern border of the landfill. 1.4.5

A drainage stream of hospital property runoff enters the site from the south and travels through a pipe under the eastern former fill area and into the steep ravine. The stream flows northwardly through the ravine for several hundred feet and then veers to the northeast and exits from the site near Suitland Parkway. The stream flows about 100 feet into a culvert under the parkway. 1,4,5

Several wooded areas are located within the fenced property around the fill areas: one on the northern side and one on the southern side of the easternmost former fill area and one between the recently closed fill area and the northwestern area of the hospital buildings and parking lots. 1, 2, 4

2.3 Ownership History

According to Richard Smith, of the District of Columbia Department of Public Works, St. Elizabeth's Hospital has been in operation since sometime during the Civil War. The hospital was a federally owned and operated mental institution until 1387. In 1987, the hospital was turned over to the District of Columbia, which currently owns and operates the facility and the surrounding property.³

2.4 Site Use History

St. Elizabeth's Hospital is currently owned and operated by the District of Columbia. Several different areas within the hospital's property have been used as fill areas since 1977. The subject area was operated as a solid waste landfill from 1982 until 1989 by the District of Columbia Department of Public Works, Solid Waste Division. The use of these landfill areas before 1977 is unknown.^{3,7}

There are four fill areas in the subject landfill. Fill material in each of these areas included storm sewer cleanings, street sweepings, road construction debris (including milled asphalt), and incinerator fly ash, according to Mr. Smith. The fly ash was taken from the District of Columbia Solid Waste Reduction Center's (SWRC) electrostatic precipitators and was generated from the incineration of domestic waste. The fly ash comprised approximately 60 percent of the total fill material and was uniform in nature, according to Mr. Smith. All material was transported to the site in dump trucks with 10-cubic-yard capacities. According to Mr. Smith, a total of six to eight truckloads of material were deposited at the landfill daily; three to four of these truckloads were ash residue.^{3,5,7}

TDD No.: F3-9005-31

The 4 fill areas have been capped with approximately 18 to 30 inches of a mixture of milled asphalt, soils, and compost from a sewage treatment plant. Most of the areas were also seeded and are currently overgrown with vegetation. The oldest fill area, which was capped in 1983, is unvegetated; parts of it are used as parking areas for hospital vehicles. The westernmost former fill area was capped in 1987 and the easternmost was capped in 1988. The recently closed fill area was closed in October 1989. According to Mr. Smith, closure plans for the landfill were approved by the District of Columbia's Department of Consumer and Regulatory Affairs after the area was closed. 3.5.6.7

2.5 Permit and Regulatory Action History

The District of Columbia Department of Public Works, Solid Waste Disposal Division, disposed waste on the St. Elizabeth's Hospital site under license no. 1-83. The revocable license, granted by the United States government, allowed the District of Columbia Department of Environmental Services to use the hospital land for the purpose of depositing earth [1].3,8

When this license was issued, on October 19, 1986, the hospital property was federally owned. In 1987, St. Elizabeth's Hospital and the surrounding property were acquired by the District of Columbia from the federal government. This license, overseen by the St. Elizabeth's Hospital Administration, remained in effect subject to the provisions and conditions outlined therein. This license was the only permit held by the District of Columbia to dispose solid waste on the St. Elizabeth's Hospital property. Although a review and an update of this license were planned, no action was taken because the active fill was closed in October 1985 (17)

The District of Columbia was also permitted, through a similar license (no. 78-1), in October 1977 for landfill practices in a smaller area of the St. Elizabeth's Hospital property. This area is west of Martin Luther King, Jr. Avenue and the current fill area. This former fill area remained active until 1982. After closure of this area, license I-83 was granted for continued landfill activities at the subject site. Copies of both licenses can be found in appendix C.3.8.9

Fly ash samples taken in 1984 from the SWRC electrostatic precipitators were found to contain trace levels of chlorinated dioxins and furans (tetra to octa isomers) (see appendix D). As a result of these findings, by request of EPA Region III Waste Management Division, CRL performed dioxin sampling on March 6, 7, and 8, 1985 at the subject site. Fill material samples were collected from throughout the landfill. Samples were also collected from three leachate streams located southeast of the site. Sediment samples were taken from a small temporary collection pond and an intermittent stream that received surface runoff and leachate from the aforementioned leachate streams. No 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) was detected in the leachate samples. The highest reported value for 2,3,7,8-TCDD in solid samples was 0.047 ppb in an ash sample (see appendix E),6,10,11,12,13

TDD No.: F3-9005-31

Additional sampling of the leachates and sediments from the streams and pond was conducted in November 1985; priority pollutant and dioxin analyses were conducted (see appendix F). Inorganic solid and aqueous samples from these locations show elevated levels of heavy metals. Organic analysis of leachate aqueous and sediment samples revealed trace to low levels of phenol (up to 110 ug/l and 790 ug/kg, respectively) and low levels of polyaromatic hydrocarbons (PAHs). Pond sediments revealed somewhat higher levels of PAHs and 340 ppb of polychlorinated biphenyl (PCB) 1260.15,16

Further EPA sampling in December 1988 revealed that several ash samples and the furnace residue and electrostatic precipitator ash were EP toxic for lead (up to 23 ppm) and/or cadmium (up to 8.45 ppm).¹⁷

2.6 Remedial Action to Date

A memorandum pertaining to the dioxin sampling at \$6. Elizabeth's Hospital, from the acting director of Health Assessment at the United States Department of Health and Human Services, stated the following conclusion: surface soil levels of \$1.57.8 TCDO and other polychlorinated dioxins and furans present at the site should not pose a public health threat to employees, patients, residents, or landfill workers. However, since polychlorinated dioxins and furans may exist at levels of concern at depths greater than one foot, it was recommended in the memo that future construction in the fill area or a land use change should be preceded by core sampling. No remedial action has been taken to date.³ For further analysis and conclusions of the 1985 sample data for the subject site, see appendix E.3,5,13,14

SECTION 3

TDD No.: F3-9005-31

3.0 ENVIRONMENTAL SETTING

3.1 Water Supply

Surface water and groundwater are the sources of potable water for individuals in the four-mile-radius area around the St. Elizabeth's Hospital site. Private domestic wells, one community development well, and four water companies serve individuals in the study area. All individuals not served by a water company are assumed to maintain private domestic wells.^{18,19}

The District of Columbia Water and Sewerage Commission (DC) serves an estimated 1.1 million people in Washington, D.C. A portion of the DC distribution area falls within the study area. DC obtains water from two surface water intakes: the Great Falls intake and the Little Falls intake. The Great Falls intake is located approximately 17 miles northwest and upstream of the site on the Potomac River. The Great Falls intake is gravity fed and is used primarily during winter months. The Little Falls intake is located at Little Falls Dam, approximately 10.5 miles northwest and upstream of the site on the Potomac River. The Potomac River receives drainage from the site via the Anacostia River, downstream of the two DC surface water in Rakes. The DC system is integrated. The DC system is connected to the Washington Suburban Sanitary Commission (WSSC) system and sells water to Arlington County and Falls Church. Do des not purchase water from any other water company.²⁰

The Arlington County Water, Company (ACWC) serves an estimated 35,000 people in Arlington County, Virginia with water perchased from DC. A portion of the ACWC distribution area falls within the study area. In cases of critical need, ACWC can interconnect with Fairfax County and Falls Church.²¹

The Virginia American Water Company (VAWC) serves an estimated 30,000 customers in the city of Alexandria and an estimated 10,000 to 12,000 customers in the city of Dale. A portion of the city of Alexandria falls within the study area. VAWC purchases water from the Fairfax County Water Authority (FCWA) and maintains two wells for emergency back-up use. The two VAWC wells are located 5.25 miles southwest of the site in the city of Alexandria and were last used during a drought in 1988.²²

TDD No.: <u>F3-9005-31</u>

FCWA serves an estimated 400,000 people in Fairfax County, Virginia and sells water to the city of Alexandria and to Arlington, Prince William, and Loudoun Counties in Virginia. FCWA obtains water from two surface water intakes. The Occoquan intake (and reservoir) is located approximately 20 miles southwest of the site on the Occoquan River. Water from the Occoquan reservoir is treated at the Lorton Treatment Plant and is distributed to the cities of Annandale, Springfield, and Alexandria and Prince William County in Virginia. The Occoquan River does not receive drainage from the site. The second intake is located approximately 17 miles northwest and upstream of the site on the Potomac River. Water from the Potomac River intake is treated at the Corbalis Treatment Plant and is distributed to the cities of Herndon, Chantilly, and Centerville and to Fairfax and Loudoun Counties in Virginia. The Potomac River receives surface drainage from the site via the Anacostia River downstream from the surface intake. The FCWA system is not integrated. FCWA owns 19 community water wells; the wells are not in use and are currently in the process of being capped.^{23,24}

WSSC serves an estimated 1.3 million people in Prince George's and Montgomery Counties, Maryland. A portion of the WSSC distribution area falls within the study area. WSSC obtains water from two surface water intakes. One intake is located at Rocky Gorge Dam, approximately 19 miles northnortheast of the site on the Patuxent River. The Patuxent River does not receive surface drainage from the site. The other intake is located near twains Lock, approximately 18 miles northwest and upstream of the site on the Potomar River. The Potomac River receives surface drainage from the site via the Anacostia River downstream from the surface intake. In addition, WSSC maintains 55 filtered water storage facilities at various points along the WSSC distribution system in order to meet peak customer demands and to provide a reserve supply for fire protection. WSSC has an interconnected water distribution pipeline so that some areas receive water from both surface sources. WSSC is interconnected with DC 20,25,26

One well in the study area is listed as producing water for public supply use from an aquifer developed in the Cretaceous Potomac Group. The well is located in the Colebrooke Development (CD), approximately 2.25 miles east-southeast of the site and serves approximately 3,337 people. The CD well was drilled to a total depth of 620 feet and has a measured static water level of 255 feet and a reported yield of 50 gallons per minute (gpm). 19,27

TDD No.: F3-9005-31

By law, no private domestic, commercial, or industrial well is permitted in the District of Columbia. Three domestic wells have been identified from the well records of Prince George's County in the study area outside of Washington, D.C (see appendix G). The wells reached total depths of 327, 330, and 312 feet, had water levels of 200, 190, and 195 feet, respectively, and had reported yields of 10, 10, and 40 gpm, respectively. All three wells are reported to produce from aquifers developed in the Cretaceous Potomac Group. Two wells, located 2.5 miles south and 2.5 miles south-southeast of the site, are the nearest wells identified as producing water for domestic use. The total population dependent on groundwater within the 3-mile radius is 3,348 people. This figure was obtained by adding the population served in the Colebrooke Development to the population using domestic wells, which is based on a home count multiplied by 3.8 persons. 19,27,28

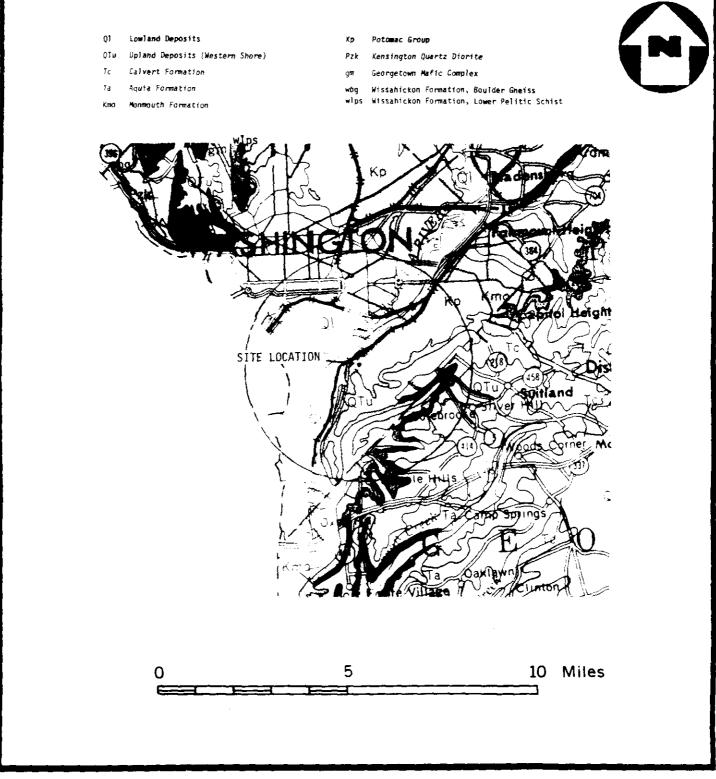
3.2 Surface Waters

Surface waters from the subject site follow topographic contours and flow chiefly toward the drainage stream between the two former fill areas. This drainage stream flows into a storm sewer located along Suitland Parkway about 100 feet east of the property fenceline. The point of discharge of this sewer is not known. The storm sewer could not be identified on the sewer and storm line maps for that area, according to a representative of the District of Columbia Government Department of Public Works. 2.4.29

The Anacostia River is located approximately one mile north of the site and empties into the Potomac River, which is located approximately one mile to the west. The Anacostia and Potomac Rivers are used for recreational and industrial purposes. A riverine tidal wetland, approximately 100 acres in size, is located about 3 stream miles downstream on the Potomac River; it is the closest wetland to the site that is within the site's surface drainage pathway. Within one mile south of the site is Oxon Run, which flows approximately three stream miles to the southwest before entering the Potomac River. 1.30

3.3 Hydrogeology

The geologic and hydrogeologic conditions in the study area were researched as part of the site inspection. A preliminary literature review was conducted to determine surface and subsurface geologic conditions, soil character, and the status of groundwater transport and storage.


TDD No.: <u>F3-9005-31</u>

3.3.1 Geology

The St. Elizabeth's Hospital site and study area are situated in the Western Shore subdivision of the Coastal Plain Physiographic Province. The Coastal Plain extends from New England southward through eastern Florida, and in Maryland has been subdivided into subaerial and submerged portions. The boundary between the subaerial and the submerged portions of the Coastal Plain is broken and sinuous, especially in the Chesapeake Bay area. The present topographic expression of the subaerial Coastal Plain is the result of extensive fluvial dissection; the Coastal Plain is dominated by a mature dendritic drainage pattern. East of Chesapeake Bay, the Coastal Plain resembles a nearly level plain. West of the bay, it is more rolling and dissected. The eastern limit of the Coastal Plain is the edge of the continental shelf, which in Maryland is located about 100 miles offshore in 600 feet (100 fathoms) of water. The boundary between the Coastal Plain Physiographic Province and the Piedmont Physiographic Province to the west and north is sinuous and poorly defined. This boundary, known as the Fall Line, is represented by the feathering of Cretaceous and Quaternary age formations as they onlap onto the crystalline rocks of the Piedmont. The Fall Line is located about 4.5 to five miles northwest of the site. 1,31,32

The Coastal Plain is underlain by a series of southeastward-dipping, wedge-shaped sheets of relatively unconsolidated Cretaceous and Quaternary age sediments. Approximately 25 percent of the study area is underlain by Cretaceous sediments, 10 percent by Tertiary sediments, and 45 percent by Quaternary sediments (see figure 3.1, page 3-5). About 20 percent of the study area is covered by water. 32,33

The St. Elizabeth's Hospital site is underlain by the Cretaceous Potomac Group, undifferentiated. The Potomac Group, undifferentiated, consists of interbedded quartzose gravel, protoquartzite and orthoquartzite, argillaceous sand, and white, dark gray, and multicolored silt and clay. The rapid lensing of bedding that characterizes all lithofacies developed in the Potomac Group is consistent with deposition in an alluvial environment. The Potomac Group, undifferentiated, ranges in thickness from 0 to 800 feet. In other areas, the Potomac Group has been subdivided into, in descending order, the Raritan and Patapsco Formations, the Arundel Clay, and the Patuxent Formation. The Raritan and Patapsco Formations range in thickness from 0 to 400 feet and consist of gray, brown, and red variegated silt and clay and lenticular, crossbedded, argillaceous sand with minor gravel. The Arundel Clay ranges in thickness from 0 to 100 feet and consists of dark gray and maroon, lignitic clay with abundant siderite concretions. The Patuxent Formation ranges in thickness from 0 to 250 feet and consists of white or light gray to orange-brown, crossbedded, argillaceous, sand and quartz gravel with minor silt and clay. No consistent upper or lower boundaries for the formations in the Potomac Group have been mapped in the study area. 32,33

Source: Geologic Map of Maryland, 1968.

FIGURE 3.1

GEOLOGIC MAP
ST. ELIZABETH'S HOSPITAL SITE
Washington, D.C.

TDD No.: <u>F3-9005-3</u>

The Cretaceous Monmouth Formation stratigraphically overlies the Potomac Group in the study area and has been mapped 1.25 miles southeast of the site. The Monmouth Formation ranges in thickness from 0 to 100 feet and consists of dark gray to reddish-brown, micaceous, glauconitic, argillaceous, fine- to coarse-grained sand. A basal gravel has been mapped in Prince George's County. 32,33

The Miocene Calvert Formation stratigraphically overlies the Monmouth Formation in the study area and has been mapped 0.5 mile southeast of the site. The Calvert Formation ranges in thickness from 0 to 150 feet and has been subdivided into 2 members, the Plums Point Member and the Fairhaven Member. The Plums Point Member consists of interbedded dark green to dark bluish-gray, fine-grained argillaceous sand and sandy clay with prominent shell beds and locally silica-cemented sandstone. The Fairhaven Member consists of greenish-blue diatomaceous clay, greenish-blue sandy clay, and pale brown to white, fine-grained argillaceous sand. 32,33

Quaternary deposits unconformably overlie Tertiary and Cretaceous age sediments in the study area. In the Coastal Plain area of Maryland, the Quaternary deposits have been subdivided into Lowland Deposits and Upland Deposits. The Lowland Deposits have been mapped 0.25 mile northwest of the site and consist of brown to dark gray, lignitic silty clay, varicolored silt and clay, and medium- to coarse-grained sand and gravel. Cobbles and boulders are common near the base of the deposits. The Lowland Deposits range in thickness from 0 to 150 feet and commonly contain reworked Eocene glauconite and marine to estuarine faunas. The Lowland Deposits include, in part, the Pamlico, Talbot, Wicomico, and Sunderland Formations of earlier workers.³²

The Quaternary Upland Deposits have been subdivided into an Eastern Shore and a Western Shore, separated by the Chesapeake Bay. The Upland Deposits (Western Shore) have been mapped less than 0.25 mile south of the site and consist of orange-brown sand and gravel, with minor silt and red, white, or gray clay. Locally, the sands and gravels may be limonite cemented. A lower gravel member and an upper loam member of the Upland Deposits (Western Shore) have been mapped in southern Maryland. The Upland Deposits (Western Shore) range in thickness from 0 to 50 feet and include, in part, the Brandywine, Bryn Mawr, and Sunderland Formations of earlier workers.³²

The nature of the crystalline rocks underlying the Cretaceous and Quaternary sediments in the study area is unknown but is assumed to be similar to the crystalline rocks that crop out at or near the Fall Line. Crystalline bedrock crops out about 4.5 to five miles northwest of the site and include the Georgetown Mafic Complex, the Kensington Quartz Diorite, the Boulder Gneiss facies of the Wissahickon Formation, and the Lower Pelitic Schist facies of the Wissahickon Formation. 32,33

TDD No.: F3-9005-31

3.3.2 Soils

Soils underlying Washington, D.C. have not been mapped and are assumed to consist of disturbed soil and landfill material. No permeability, available moisture capacity, or soil reaction data are available for this area.

Eight soil samples were taken by NUS FIT 3 personnel during the June 27, 1990 site visit. Soils ranged from light brown to dark brown in color and from sandy loam to clayey silt in texture.⁴

3.3.3 Groundwater

Groundwater in the study area occurs in and mover through interconnected intergranular openings in the unconsolidated deposits and through secondary openings, such as joints and fractures, in the underlying crystalline bedrock. Groundwater in the Coastal Plain area may be under confined or unconfined conditions. No regionally persistent confining beds have been documented in either the unconsolidated sediments or the crystalline bedrock within the study area. For this reason, all the aquifers within the study area are considered to be regionally, hydraulically interconnected. Groundwater recharge is by the infiltration of local precipitation, and groundwater discharge occurs at wells, seeps, springs, and streams. Palustrine, riverine, and lacustrine wetlands have been identified in the study area. Mapped palustrine wetlands include forested, shrub/scrub, emergent and open water. Riverine wetlands include lower perennial open water, tidal open water, tidal emergent, and tidal flat. Lacustrine wetlands include littoral emergent. The nearest wetlands of greater than five acres in area are located 0.5 mile south of the site on Oxon Run and have been identified as palustrine forested. The wetlands are hydraulically interconnected with the shallow aquifers and serve as additional discharge points. These wetlands are outside the surface drainage pathway. 1.4.30.32

TDD No.: F3-9005-31

The site is underlain by unconsolidated sediments of the Potomac Group. The Patapsco and Patuxent Formations (Potomac Group) are considered important water-bearing formations in Prince George's County and are capable of yielding sufficient quantities of water for most uses. The Arundel Clay, which separates the Patapsco Formation from the Patuxent Formation in other areas, may serve as an aguitard. Twenty wells are listed as producing water from aguifers developed in the Potomac Group near the study area. Eleven of the 20 wells produce water for industrial and/or commercial use, 5 produce water for domestic use, and 1 produces water for public supply use. Three of the 20 wells are listed as observation wells, and 1 is listed as a test well. The well depths for the 11 industrial and commercial wells range from 18 to 620 feet; the median well depth is 376 feet. The measured static water levels reported for 7 of the 11 industrial and commercial wells range from 95 to 210 feet; the median depth is 180 feet. The yields reported for 9 of the 11 industrial and commercial wells range from 5 to 85 gpm; the median yield is 32 gpm. The specific capacity reported for 7 of the 11 industrial and commercial wells ranges from 0.1 to 0.9 gpm per foot of drawdown; the median specific capacity is 0.6 gpm per foot of drawdown. The well depthy for the 5 domestic wells range from 312 to 875 feet; the median depth is 330 feet. The measured static water levels reported for the 5 domestic wells range from 150 to 200 feet; the median depth is 190 feet. The yields reported for 4 of the 5 domestic wells range from 10 to 40 gpm; the median yield is 15 gpm. The specific capacity reported for four of the five domestic wells ranges from 0.1 to Vigpm per foot of drawdown; the median specific capacity is one gpm per foot of drawdown. The public supply well was drilled to a total depth of 620 feet and has a measured static water level of 255 feet, a reported yield of 50 gpm, and a specific capacity of 0.4 gpm per foot of drawdown. The 3 observation wells are owned by WSSC and were drilled to 603, 630, and 684-feet. The measured static water levels reported for the observation wells are 100, 102, and 173 feet, respectively, the reported yields are 439, 540, and 700 gpm, respectively, and the specific capacities reported are 1.8,4.4, and 9.4 gpm per foot of drawdown, respectively. The test well is also owned by WSSC and was drilled to 288 feet. The test well is screened in 2 intervals and has reported measured static water levels of 56 feet and 245 feet and reported yields of 136 and 265 gpm, respectively. 19,33

No wells are listed as producing water from aquifers developed in the Cretaceous Monmouth in Prince George's County or from aquifers developed in the Miocene Calvert Formation or Quaternary deposits in the study area.¹⁹

TDD No.: <u>F3-9005-31</u>

Aquifers developed in the Calvert Formation in Prince George's County are capable of producing sufficient quantities of water for domestic and small industrial or commercial use. Forty-three wells are listed as producing water from aquifers developed in the Calvert Formation in Prince George's County. Thirty-nine of the 43 wells produce water for domestic use, 3 wells produce water for industrial use, and 1 well produces water for commercial use. The well depths for the 39 domestic wells range from 11 to 85 feet; the median depth is 47 feet. The measured static water levels for 38 of the domestic wells range from 9 to 67 feet; the median depth is 30 feet. The yields reported for three of the domestic wells are three, two, and two gpm. The well depths for 2 of the 3 industrial wells are 15 and 52 feet. Neither static water levels nor yields were reported for the industrial wells. The commercial well was drilled to a total depth of 52 feet and has a measured static water level of 32 feet. No yield was reported for the commercial well.¹⁹

Aquifers developed in the Quaternary deposits in Prince George's County are capable of producing sufficient quantities of water for domestic and small industrial or commercial use. Two wells are listed as producing water from aquifers developed in Quaternary deposits in Prince George's County. One of the wells produces water for domestic and stock use, and one well produces water for industrial use. The domestic and stock use will was drilled to a total depth of 60 feet and was reported as having an inadequate yield. Neither the static water level nor the yield were reported for the domestic and stock well. The industrial well was drilled to a total depth of 26 feet and has measured static water level of 16 feet. No yield was reported for the industrial well. 19

The direction of groundwater flow beneath the St. Elizabeth's Hospital site is unknown. The direction of groundwater flow beneath the site, based on topographic observations and the role of streams in groundwater discharge, is northeastwardly toward a small northward-trending gully. The depth to groundwater beneath the site is unknown. The depth to groundwater beneath the site is estimated to be less than 150 feet, which reflects the maximum elevation of the site above the Anacostia River. The depth to bedrock beneath the site is unknown.

3.4 Climate and Meteorology

The subject site is located within the continental climate of the United States. The annual temperature for College Park, Maryland, which is located approximately 10 miles northeast of the site, is 56°F. The average monthly temperatures range from 34°F in January to 77.2°F in August. The average annual precipitation for College Park is 42.73 inches. The average monthly precipitation ranges from 2.79 inches in February to five inches in August. The mean annual lake evaporation for the area of the site is approximately 36 inches. The net annual precipitation for the site area is approximately 6.73 inches. A 1-year, 24-hour rainfall will produce approximately 2.7 inches of rain.34,35,36

TDD No.: F3-9005-31

3.5 Land Use

St. Elizabeth's Hospital occupies approximately 50 acres west and south of the fill area. Other land use within three miles of the site consists primarily of residential communities. The site lies in the southwestern corner of the District of Columbia. The Anacostia River runs from northeast to southwest through the study area. The Potomac River runs from north to south and marks the border between Maryland and Virginia. Several military installments, including United States Naval facilities and Bolling Air Force Base, are located along the Maryland side of the Potomac. Downtown Washington is located within three miles northwest of the site.^{1,2,3}

3.6 Population Distribution

The population within a 3-mile radius of the subject size is estimated to be as follows: 31,921 people within 1 mile; 95,763 people between 1 and 2 miles, and 106,888 people between 2 and 3 miles. The total population for the study area is approximately 234,572. These figures are based on a count of homes in the area multiplied by 3.8 persons combined with census data for Alexandria, Virginia and Washington, D.C and its suburbs. 1.37,38

3.7 Critical Environments

Except for occasional transient individuals, no federally listed or proposed endangered or threatened species are known to exist in the project impact area.³⁹

A riverine tidal wetland, approximately 100 acres in size, is located about 3 stream miles downstream on the Potomac River.³⁰

SECTION 4

TDD No.: <u>F3-9005-31</u>

4.0 WASTE TYPES AND QUANTITIES

Wastes disposed on site included storm sewer cleanings, street sweepings, road construction debris including milled asphalt, and incinerator ash residue. The incinerator ash comprised approximately 60 percent of the total fill material, according to Mr. Smith. All wastes were disposed under United States Government License No. 1-83.3,7,8

In March and November 1985, CRL performed comprehensive sampling at the subject site. Incinerator ash residue from the District of Columbia SWRC was found to contain some trace levels of chlorinated dioxins and furans. Other solid and aqueous samples obtained on site revealed elevated levels of heavy metals (lead up to 7,900 ppm) and trace levels of phenol (up to 110 ug/l and 790 ug/kg). Low to high levels of PAHs and up to 340 ppb of PCB 1260 were also revealed in on-site pond samples. 10.11.12.13.15,16

Further EPA sampling in December 1988 revealed that the ash samples and the furnace residue were EP toxic for lead (up to 23 ppm) and cadmium (up to 8.45 ppm). 77

Approximately 460,000 tons of fly ash residue were deposited on the St. Elizabeth's Hospital property from January 1982 until October 1989. The appoint of ash residue shipped from SWRC to the landfill was recorded on "Daily Log Sheets of Ash Residue Out," according to Mr. Smith. A breakdown of ash residue deposited on site each year is as Tallows:

	,
1982:	74,667 tons
1983 <i>r</i>	73,834 tons
1984:	62,683 tons
1985:	44,998 tons
1986:	66,007 tons
1987:	65,527 tons
1988:	37,564 tons
1989:	35,673 tons

If ash residue comprised 60 percent of the total fill material, this would indicate that about 767,000 tons of total waste materials were deposited on site.^{3,7}

FIT 3 sampling in June 1990 revealed 53 ug/kg 4,4'-DDT, up to 2,000 mg/kg lead, up to 1.20 mg/kg mercury, up to 93 ug/kg tetrachloroethene, and up to 70 ug/kg toluene in on-site soil samples Elevated levels of chromium (271 ug/l), cobalt (797 ug/l), mercury (0.80 ug/l), and lead (1,360 ug/l) were detected in downstream surface water samples.⁴

SECTION 5

TDD No.: F3-9005-31

5.0 FIELD TRIP REPORT

5.1 Summary

On Wednesday, June 27,1990, NUS FIT 3 members Linda Ciarletta, Janis Hottinger, Theresa Taggart, Kim Walters, Thomas Ferrie, and Eric Roland performed a site inspection of the St. Elizabeth's Hospital site in Washington, D.C. FIT 3 was accompanied by Richard Smith, of the District of Columbia Department of Public Works. Access to the site and permission to take photographs were granted by Mr. Smith. Weather conditions were sunny, with temperatures in the upper 80s. Photographs were taken on site (see figure 5.2, page 5-7, and the photograph log, section 5.5).

The total number of samples obtained was 5 aqueous and 10 solids, including blanks and duplicates

(see figure 5.1, page 5-3).

5.2 Persons Contacted

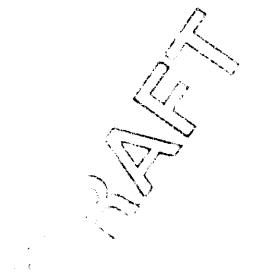
5.2.1 Prior to Field Trip

James McCreary
Site Investigation Officer
U.S. EPA
841 Chestnut Building
Ninth and Chestnut Streets
Philadelphia, PA 19107
(215) 597-1105

Jay Jahangri
Department of Consumer Regulatory Affairs
614 H Street, Northwest
Room 519
Washington, DC 20001
(202) 783-3192

5.2.2 At the Site

Richard Smith
Chief
Solid Waste Disposal Division
Department of Public Works
Second North Place, Southeast
Washington, DC 20003
(202) 727-4821


Richard Smith
Chief
Solid Waste Disposal Division
Department of Public Works
Second North Place, Southeast
Washington, DC 20003
(202) 727-4821

Earl Delauder I-95 Energy Resource Recovery Facility County of Fairfax 9850 Lorton Road Lorton, VA 22079 (703) 690-1703

TDD No.: <u>F3-9005-31</u>

5.2.3 Water Supply Well Information

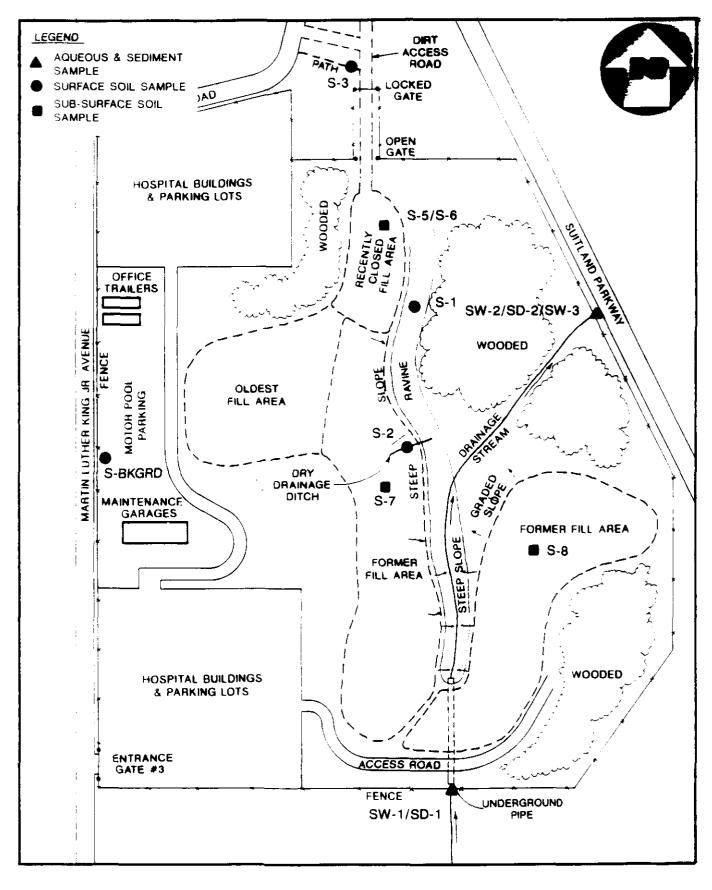
The majority of residents within a three-mile radius of the subject site utilize public supplies as a source of potable water. No home wells were identified within 0.5 mile of the site.

TDD NUMBER F3- (1(1)5-3)

EPA NUMBER 17 14

5.3 SAMPLE LOG

SITE NAME of trateit stapped


TRAFFIC REPORTS Organic Inorganic High Hazard		SAMPLE IDENTIFIER	PHASE	SAMPLE DESCRIPTION	SAMPLE LOCATION	TARGET USE	přt	FIELD MEASUREMENTS
CEN76	PEROM	<u>_</u> , _)	SOL	Surface soil Sandy boam nath From Apade	In northern end of on the rewine About 26th upgradual from tropaty forceline	On Site Forter poince in		
CEN77	MCCXCA	6,20	-5Cil	Suffere son dark troops lots of debition in and	11 is one ofthe drag drawings Chick When teach was about Obin 5 100 Word sample	On site Archaelakus esi		
CENTE	M(1013)	5 - 3	SU	Specification of the state of t	Four locations from 5' to 40' from locked gate on ux turn side of ourse 12 ad	off site		
(ENG)	MCDX32	- 1 · 1 · 1	-5¢)L.	Subsurface sol 20" Dark trewn w/chy Orly-mell		And the		
CENEL	MCDX 254	[pr (p	20L	Deplayer of	rams frations	AND SOLD SOLD SOLD SOLD SOLD SOLD SOLD SOL		
CINES	HC0785	5 1	SCIL	Fact ye surely	Water tare 15 about On mit 5 20 E of sample teatron	L. H. at L. Later		
(EN83	MCDT86	5, 8	Sil	Fally by take and 1000 Dark Drop Ratign among	Heystal holding water ally one or trys is about 1 per 532°W of sample location	An sale		
CENRY	MCDT87	5, Pack	SOL	Surfere coll Brown Silty, some day	Telephone pole 15 3FT. N 880W I tom sample 1000 how	Consolt restricted and		
(ENSS		Top Blk	A (x	Apureus blank acceptable with course	104. 1.11	Trip Kilosk		

TDD NUMBER DC - 14

5.3 SAMPLE LOG

SITE NAME 31 1 /12/20th oftog.

TRAFFIC REPORTS Organic Inorganic High Hazard		SAMPLE IDENTIFIER	PHASE	SAMPLE DESCRIPTION	SAMPLE LOCATION	TARGET USE	рн	FIELD MEASUREMENTS	
	MCDT88		SW-1	AQ	clear odorless	Taken from drainage Stream upotrosm of landfill, approx 1009. Afrom bond in alless rod	on-site restricted occess	60	255 remittos
ŒN79	HCOX32		51.1	Sa	Light brown chy-like	same location as SW-1	on-site. restricted occess		
CEN87	HCDT89		SW-2	AQ	Muddy, only sheen, booky No color	Taken From drewroge stream dungsmann of known 1, 51 ft. east of suithing Parkway	off-site,open	5.6	6320 umbs
(EN68	MODT90		Sd-2	SOL	Roldish Sandy, No rocks No odor	same location as sw-2	off site, open		
CEN89	MCDT91		5W-3	AQ	Duplicate of SW-2	same location	off-site, open	5.6	Cx200 rentos
CENTO	MODT92		Aq-BIK	Aq	. Field Blank	Fold Blank	1 mkl Blank	37	1 similes
34									
	=								

SAMPLE LOCATION MAP

ST. ELIZABETHS HOSPITAL SITE, WASHINGTON, D.C.

(NO SCALE)

FIGURE 5.1

TDD No.: <u>F3-9005-31</u>

 A blue drum was observed in the ravine near the location of sample 5-1. The drum was lying on its side and was partially crushed.

- A dry drainage ditch was observed on the eastern slope (40 percent slope) of the westernmost former fill area. The ditch contained a large amount of glass, metal, rubber, and other types of debris.
- The surface material at sample locations S-5/S-6, S-7, and S-8 was grayish in color, with a large amount of asphalt material and small rocks.

• Soil color changed at a depth of 12 inches at sample locations S-5/S-6 and S-7 and at a depth of 6 inches at sample location S-8.

• The drainage ditch and stream at sample location Sw2/Sd-2 were observed to contain metal waste, plastic bags, and other debris. A plastic bag with unidentifiable contents may have been medical in origin.

TDD No.: F3-9005-31

5.4 Site Observations

• The HNU was set on the 0 to 20 scale. The background reading was 0.2 ppm. No readings above background were recorded.

- The mini-alert was set on the X1 position; no readings above background were recorded.
- The landfill area was completely enclosed with a six-foot fence.
- Two gates were located along the northern dirt access road into the fill area; the southernmost gate was open and was within the fenced area of the site, and the northernmost gate was locked.
- Concrete abutments blocked vehicular traffic from the access road outside the locked gate.
- A well worn path was located outside the locked gate. The path went from the access road to Dunbar Road. Trash and beer bottles were scattered in the area between the path and the locked gate.
- Scattered areas of sparse vegetation were located at various points throughout three sections of the landfill. The oldest fill acea was unvegetated and was covered with compressed milled asphalt.
- Parts of the oldest fill are are currently used as parking lots for hospital vehicles.
- The recently closed fill area was covered with a mixture of milled asphalt from road construction activities and compost from a sewage treatment plant.
- A steep-sided ravine was located between the eastern and western fill areas.
- A drainage stream flowed into the landfill from the south, through piping under the access road, and between the two southern fill areas in the steep-sided ravine. The stream exited from the northeastern side of the site and flowed approximately 100 feet into a culvert under Suitland Parkway.

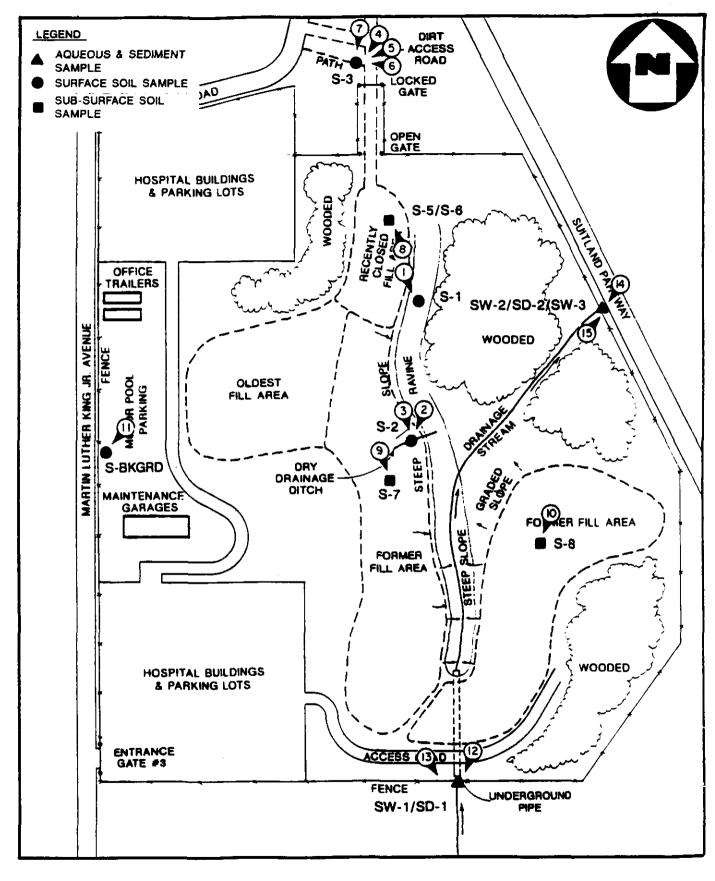


PHOTO LOCATION MAP

ST. ELIZABETHS HOSPITAL SITE, WASHINGTON, D.C.

(NO SCALE)

FIGURE 5.2

EPA REGION III SUPERFUND DOCUMENT MANAGEMENT SYSTEM

DOC ID #_	413455	-
PAGE#		

IMAGERY COVER SHEET UNSCANNABLE ITEM

Contact the CERCLA Records Center to view this document.

· Elizaber

OPERABLE UNIT

SECTION/BOX/FOLDER

REPORT OR DOCUMENT TITLE	Draft Site Inspection
Report	
DATE OF DOCUMENT <u>Feb.</u>	
DESCRIPTION OF IMAGERY	Photograph Log
NUMBER AND TYPE OF IMAGERY ITE	M(S) 15 Site photos

S EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

PART 1 - SITE LOCATION AND INSPECTION INFORMATION

. IDENTIFICATION				
O1 STATE	02 SITE NUMBER			
DC	14			

F3-9005-31

II. SITE NAME AND LOCATION									
01 SITE NAME (Legal, common, or descriptive name of site)				02 STREET, ROUTE NO , OR SPECIFIC LOCATION IDENTIFIER					
St. Elizabeth's Hospital				2700 I	lartin Luth	er King Aver	iue		
03 CITY			04 9	TATE	05 ZIP CODE	06 COUNTY		07 COUNTY CODE	08 CONG DIST
Washington				DC	20032	N/A		0011	DC01
09 COORDINATES	TUDE	10 TYPE OF OWNER	SHIP (heck one)	X C. STATE		 יום אדאט Пו	- AALIANGIDAL
3 8° 5 1' 0 5" N 7 6° 5	17UDE 9' 3 5" W	FOTHER	ு _"	FEDERA	·	(<u>\)</u> (.5/\)		KNOWN	MUNICIPAL
III. INSPECTION INFORMATION									
01 DATE OF INSPECTION 02 SITE STATUS		03 YEARS OF OPERA	TION						
06/ 27 / 90 A ACT		October 198 BEGINNING YE		/ 0	ctober 1989 ENDING YEAR) 	UNK	NOWN	
04 AGENCY PERFORMING INSPECTION (Check all the	r apply)	<u></u>							
a EPA X B. EPA CONTRACTOR _	NUS FIT	3[] c.	MUNICH	AL D. M	UNICIPAL CONTRAC	TOR - IN	lame of firm)	
E STATE F STATE CONTRACTOR] G.	OTHER				ane or mmy	
	(Name of firm)				07 ORGANIZA	(Specify)	O 8 ⊤ELEPH	ONE NO	
os chiefinspector Linda Ciarletta	Biolo	gist 			NUS FIT		ł	687-9510	
D9 OTHER INSPECTORS	10 TITLE				11 ORGANIZA	_	12 TELEPH	ONE NO	
Janis Hottinger	Envir	onmental Scie	nti:	st	NUS FI	3	(215)	687-9510	
Theresa Taggart	Envir	onmental Scie	nti	st	NUS FIT 3		(215) 687-9510		
Thomas Ferrie	Envir	Environmental Scie			NUS FIT 3		(215) 687-9510		
	Environmental Scie				NUS FIT 3		(215) 687-9510		
Eric Roland	Envir	n CT	.150 403 721 3		1 213 007 3310				
Kim Walters	Envir			NUS FI	Г 3	(215) 687~9510			
13 SITE REPRESENTATIVES INTERVI EW ED Richard Smith	Chief So	14 TITLE Chief Solid Waste		ste Second North_Place,Southeast			727-4821		
RICHARD SHITTI	Disposal Division,			ashino	ton. D.C.	20003	. 202	721-4021	·
Department of Public Works							()		
Earl Delauder Landfill Manager		Manager	9850 Larton Road Larton, VA 22079 ((703)	690-1703	3	
							()		
							()		
							()		
<u></u>			_				()		
17 ACCESS GAINED BY 18 TIME OF INSPECTION 19 WEATHER CONDITIO							<u> </u>		
(Check one) 7:00 A.M. Sunny, with temperatures in the upper 80s. WARRANT									
IV. INFORMATION AVAILABLE FROM									
01 CONTACT 02 OF (Agency/Organization)							03 TELEPH	IONE NO	
James McCreary	U.S.	EPA				(215) 597-1175			
04 PERSON RESPONSIBLE FOR SITE INSPECTION FOR	A	05 AGENCY		06 ORG	ANIZATION	07 TELEPHONE NO).	08 747	
Linda Ciarletta		NUS		FIT	3	(215) 687-9	9510	1	20 90

FPΔ

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFIC	ATION
O1 STATE	02 SITE NUMBER

V		•	PART 2 - WAS	TE INFORMAT	TION	DC	14	
II. WASTE STA	TES, QUANTITIES, AND CHA	RACTERISTICS						
4 30LID 4 POWDER	E. SLURRY	IZ WASTE QUANTITY A' (Measures of waste independent) App TONS CUBIC YARDS NO OF DRUMS	oroximatel 460,000	y X	ASTE CHARACTE CONIC CORROSIVE RADIOACTIVE PERSISTENT	RISTICS (Check all that apoly) E SOLUBLE F NEECTIOUS E G HEAMMABLE H GNITABLE	HIGHLY JOLATILE THEACTIVE LINCOMPATIBLE M NOT APPLICABLE	
II. WASTE TYP	E				·			
CATEGORY	SUBSTANCE NAME	01 GROSS AMO	UNT	02 UNIT OF MEASURE		03 COMMENTS		
SLJ	SLUDGE							
-)LW	OILY WASTES							
SOL	SOLVENTS							
PSO	PESTICIDES							
οςς	OTHER ORGANIC CHEMICALS	unknown	1	unknow	n			
-00	NORGANIC CHEMICALS					flyash samples w	were found to contain	
÷10	#CIDS					elevated levels	of several organic	
945	BASES					chemicals and he	avy metals.	
MES	HEAVY METALS	unknown	1	unknow	n			
V. HAZARDOU	IS SUBSTANCES (See Appen	dix for most frequ	iently cited (AS Numbers)				
OI CATEGORY	12 SUBSTANCE NAME Previous Sampling:	03 CAS NUMBER	R 04 STORA	GE DISPOSAL MET	нов	05 CONCENTRATION	06 MEASURE OF CONCENTRATION	
MES	lead	7439-92-1	fly as	h and road		8020	ua/1	
MES	cadmium	7440-43-9	const	ruction del	bris were	123	ug/l	
000	phenol	108-95-2	2 deposited directly on t		tly on the	290	ug/kg	
000	Aroclor 1260	11096-82-5	site			340	ug/kg	
	FIT 3 Sampling:							
PSD	DDT Sumpring.	50-29-3				53	ua/ka	
SOL	toluene	108-88-3				70	ug/kg	
MES	chromium	7440-47-3				75.20	mg/kg	
MES	cobalt	7440-48-4		<u></u>		797	ug/1	
MES	lead	7439-92-1				2000	mg/kg	
MES	mercury	7439-97-6				1.20	mg/kg	
V. FEEDSTOC	KS (See Appendix for CAS N	umbers) _{N/A}			·			
CATEGORY	01 FEEDSTOCK NAME	02 CAS 1	NUMBER	CATEGORY	01 FEEDSTOC	K NAME	TZ CAS NUMBER	
503				FDS				
FD\$				FD\$				
105				FD\$				
FD\$				FDS				
	F INFORMATION (Cite speci							
HC EDA	Inonganic and organic	data Duality	Accurance	POUTON CH	6964/90	LIC Caint Elianh	othic Upenital	

US EPA. Inorganic and organic data Quality Assurance review, Case 5256/2057C, Saint Elizabeth's Hospital. March 6, 1986.

NUS FIT 3. Preliminary assessment; site visit. TDD No. F3-8904-20, July 20, 1989.

NUS FIT 3. Site inspection; sample results. TDD No. F3-9005-31, June 27, 1990.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

1. IDENTIFICATION				
O1 STATE	02 SITE NUMBER			

11. H	AZARDOUS CONDITIONS AND INCIDENTS				
31	X 4 POLNOWATER CONTAMINATION POPULATION POTENTIALLY AFFECTED 3348/3 mile rad Elevated levels of heavy metals have bee the site is 2.25 miles east-southeast of	n located in wastes at the sit	te. The	X POTENTIAL closest groundwa	atter well to
21	X 3 SURFACE WATER CONTAMINATION	02 OBSERVED (DATE:)	X POTENTIAL	ALLEGED
73	An on-site drainage stream flows into a the Anacostia and Potomac Rivers flow w cobalt(797 ug/l), mercury(0.80 ug/l), a samples.	24 NARRATIVE DESCRIPTION storm sewer system. The pointithin 1 mile of the site. Ele	vated le	charge of the sevels of chromium	ewer is unknown; n(271 ug/1),
31	C CONTAMINATION OF AIR	02 OBSERVED IDATE		POTENTIAL	ALLEGED
>3	None reported or observed.	14 NARRATIVE DESCRIPTION			
31	D FIRE EXPLOSIVE CONDITIONS	02 OBSERVED IDATE)	POTENTIAL	ALLEGED
13	POPULATION POTENTIALLY AFFECTED	04 NARRATIVE DESCRIPTION		_	
01	None reported or observed.	02 OBSERVED (DATE	}	X POTENTIAL	ALLEGED
03	POPULATION POTENTIALLY AFFECTED 31921/1 mile re		 -		
	Although the site is entirely fenced, i unrestricted. Residential communities a	•		-	, -
01	X F CONTAMINATION OF SOIL SHEA POTENT ALLY AFFECTED 20 acres	02 OBSERVED (DATE 34 NARRATIVE DESCRIPTION)	POTENTIAL	ALLEGED
.,	Elevated levels of heavy metals have been in the landfill. Soil samples on site 1.20 mg/kg of mercury, up to 93 ug/kg of	en identified in wastes deposi revealed 53 ug/kg of 4,4-DDT,	up to 200		
91	X G. DRINKING WATER CONTAMINATION	02 OBSERVED (DATE)	X POTENTIAL	ALLEGED
03	POPULATION POTENTIALLY AFFECTED 3348/3 mile rad There are no surface water intakes with people within a 3-mile radius that dependent	in 3 stream miles downstream.			f 3,348
) 1	M WORKER EXPOSURE/INJURY	02 OBSERVED (DATE)	POTENTIAL	ALLEGED
03	WORKERS POTENTIALLY AFFECTED.	34 NARRATIVE DESCRIPTION			
	None reported or observed.				
01	X : POPULATION EXPOSURE/INJURY	02 OBSERVED (DATE)	POTENTIAL	ALLEGED
03	POPULATION POTENTIALLY AFFECTED				
	Although the site is entirely fenced, i unrestricted. Residential communities				

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION				
O1 STATE	02 SITE NUMBER 14			

1		ART 3 - DESCRIPTION OF	F HAZARDOUS CONDIT	IONS AND INCIDEN	TS DC	14
II. H	AZARDOUS CONDITIONS AND IN	CIDENTS (Continued)				
)* (4	X .AMAGE TO FLORA		02 K OBSERVED (DA		□ 3046NL 7F	
	Scattered areas of spars Most of the landfill was	-	noted at various	points througho	ut the landfill	•
31 34	DAMAGE TO FAIJNA TIARRATIVE DESCRIPTION (Include name)		DZ OBSERVED (DA	··E	: Orentiau	ALLEGED ALLEGED
	None reported or	· observed.				
01 04	L CONTAMINATION OF FOOD CHA	N	02 OBSERVED (DA	E	POTENTIAL	ALLEGED
	None reported or	observed.				
31	M INSTABLE CONTAINMENT OF W Spills, Runoff, Standing liquids, U		02 X OBSERVED (DA	6/27/90	POTENTIAL	ALLEGED
33	POPULATION POTENTIALLY AFFECTED 25 Wastes deposited on site revealed 53 ug/kg of 4,4 and up to 70 ug/kg of to	e are in direct cou I-DDT, up to 93 ug,	ntact with soils.	No liner was u		
31 04	M DAMAGE TO OFFSITE PROPERTY		02 OBSERVED (DA	re	POTENTIAL	ALLEGED
J4						
	None reported or	observed.				
01 04	NARRATIVE DESCRIPTION Surface water runoff fro chromium(271 ug/1), coba water downstream from the	om the site flows of the site		adjacent to the		ed levels of
)1 -94	P TEEGAL UNAUTHORIZED DUMP THARATTHE DESCRIPTION None reported or		02 OBSERVED (DA	re	POTENTIAL	ALLEGEO
05	DESCRIPTION OF ANY OTHER KNOWN, PO	TENTIAL, OR ALLEGED HAZAR	ROS			
	None reported or	observed.				
(II. T	OTAL POPULATION POTENTIALL		2 within 3 miles	-		
IV. C	OMMENTS					
	N/A					
V. S	OURCES OF INFORMATION (Cite	specific references, e.g	g., state files, sample an	alysis, reports)		
US Smi	EPA. Summary Report, Dic th, Richard, Chief Solid NUS FIT 3. Meeting. FIT 3. Site inspection FIT 3. Site inspection	Waste Disposal Div July 20, 1989. ; site visit. TDD	t. Elizabeth's Hos vision,Government No. F3-9005-31,	pital. March 6 of District of	through 8, 198 Columbia, with	5. Richard Sheldon,

9	EP#

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION				
O1 STATE	02 SITE NUMBER			
DC	14			

LIA	PART 4 - P	ERMIT AND DESC	RIPTIVE INFORMATION	DC	14
II. PERMIT INFORMATION					
01 TYPE OF PERMIT ISSUED (Check all that apply)	02 PERMIT NUMBER	03 DATE ISSUED	04 EXPIRATION DATE	05 COMMENT	'5
A NPDES		1			
☐ 8 UK					
C. AIR					
D RCRA					
E RCRA INTERIM STATUS					
F SPCC PLAN					
G STATE (specify)					
H LOCAL (specify)					
OTHER (specifyFederal Govt		10-82	The landfill was c	mpletely	closed in October 1989.
☐ 」 NONE Department of HEW		<u> </u>		<u> </u>	
III. SITE DESCRIPTION					
01 STORAGE/DISPOSAL (Check all that apply)	02 AMOUNT 03 I	UNIT OF MEASURE	04 TREATMENT (Check all that apply)	,	05 OTHER
X A. SURFACE IMPOUNDMENT	20	acres	X A. INCINERATION DEFORE		X A BUILDINGS ON SITE
B. PILES			in landerground in section	dfili N	1
C. DRUMS, ABOVE GROUND			C. CHEMICAL/PHYSICAL	ļ	
O FANK, ABOVE GROUND			O. BIOLOGICAL	ļ	
E. TANK, BELOW GROUND			E. WASTE OIL PROCESSING	ļ	96 AREA OF SITE
F LANDFILL			F SOLVENT RECOVERY	ļ	1
G. LANDFARM			G OTHER RECYCLING/RECOV	/ERY	
H OPEN DUMP			H OTHER(Specify)		(Acres)
I. OTHER					
07 COMMENTS					
The landfill on the hospital property was used by the District of Columbia from 1982 to 1987, for the disposal of road construction debris, street sweepings, and incineratorfly ash from D.C.'s Solid Waste Reduction Center's electrostatic precipitators.					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
IV. CONTAINMENT					
01 CONTAINMENT OF WASTES (Check one)	_				
A. ADEQUATE, SECURE	B. MODERATE	X c. in/	ADEQUATE, POOR D	INSECURE, UI	UNSOUND, DANGEROUS
02 DESCRIPTION OF DRUMS, DIKING, LINERS, B	ARRIERS, ETC.				
The landfill was unlined.	. Surface water r	unoff from the	: site rums off site int	o a storm	ı sewer.
V. ACCESSIBILITY	V. ACCESSIBILITY				
01 WASTE EASILY ACCESSIBLE YE	01 WASTE EASILY ACCESSIBLE YES X NO				
OZ COMMENTS The site is entirely fenced. However, it has been noted in the past that the entrance gates are frequently unrestricted.					
VI. SOURCES OF INFORMATION (Cite		- film annaluse			
US FPA. Summary Report. Di	ioxin Sampling at	St. Elizabeth'	's Hospital. March 6 t	through 8,	, 1985.
US EPA. Summary Report, Dioxin Sampling at St. Elizabeth's Hospital. March 6 through 8, 1985. Smith, Richard, Chief Solid Waste Disposal Division, Government of District of Columbia, with Richard Sheldon, NUS FIT 3. Meeting. July 20, 1989.					
NUS FIT 3. Site inspection; site visit. TDD No. F3-9005-31, July 27, 1989.					

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PLANTER DEMOGRAPHIC AND ENVIRONMENTAL DATA

I. IDENTIFIC	I. IDENTIFICATION			
O1 STATE	02 SITE NUMBER 14			

PART 5 - WATER, DEMOGRAPHIC	, AND ENVIRONMENTAL	DATA	DC	14
II. DRINKING WATER SUPPLY				
11 TYPE OF DRINKING SUPPLY Check as applicable) SURFACE WELL ENDANGERED COMMUNITY A X 3 X 0 X YON-COMMUNITY C 0 0 X	AFFECTED MONITORED	03 DISTANCE TO 2 Surface 3 Well 2	e 10.5	upstream
III. GROUNDWATER				
21 GROUNDWATER USE IN VICINITY (Check one)				
A ONLY SOURCE FOR DRINKING Other sources available) COMMERCIAL, INDUSTRIAL, IRRIGATION (No other water sources available)	Limited other sources.	, INDUSTRIAL, IRRIGATION available)	• 🗆 •	NOT USED, UNUSABLE
D2 POPULATION SERVED BY GROUND WATER 3,348 within 3 miles	03 DISTANCE TO NEAREST DR	INKING WATER WELL	2.2	5(mi)
34 DEPTH TO GROUNDWATER OS DIRECTION OF GROUNDWATER FLOW 100 - 150 ft) northeast	06 DEPTH TO AQUIFER OF CONCERN 100 - 150 (ft)	07 POTENTIAL YIELD OF AQUIFER 72,000	3 8 SOLE	SOURCE AQUIFER
DESCRIPTION OF WELLS (including usage, depth, and location relative to population and buildings) A development well is located 2.25 miles east-southeast of the site. It is developed in the Potomac Group, has a total depth of 620 feet and a water level of 255 feet, and yields 50 gpm. Two nearby domestic wells are located 2.5 miles south and 2.5 miles south-southeast of the site and are developed in the Potomac Group. The 2 wells have a total depths of 330 feet and 327 feet and water levels of 190 feet and 200 feet, respectively, and yield 10 gpm each.				
Land surface acts as recharge X YES	10 RECHARGE AREA Land surface acts as recharge Wetlands present in study area. X YES COMMENTS area for infiltration of local X YES COMMENTS Anacostia River and Potomac River			
IV. SURFACE WATER				
31 SURFACE WATER USE IN VICINITY (Check one) X A RESERVOIR, RECREATION INFORMATION, ECONOMICAL IMPORTANT RESOURCES 32 AFFECTED/POTENTIALLY AFFECTED BODIES OF WATER	_	RCIAL, INDUSTRIAL		OT CURRENTLY USED
Anacostía River	AFFECT	EO 319	STANCE TO SITE	
Potomac River			1	
				(mi)
V. DEMOGRAPHIC AND PROPERTY INFORMATION			<u> </u>	
31 FOTAL POPULATION WITHIN		02 DISTANCE TO NEARE	ST POPULATION	
ONE (1) MILE OF SITE TWO (2) MILES OF SITE TH	REE (3) MILES OF SITE	_	_	
a. 31.921 a. 127.684 c	234,572 NO OF PERSONS	<u> </u>	.1	(m)
03 NUMBER OF BUILDINGS WITHIN TWO (2) MILES OF SITE	04 DISTANCE TO NEAREST OF	F-SITE BUILDING		
33,601 < 0.1 (mi)				
S POPULATION WITHIN VICINITY OF SITE (Provide narrative description of nature of population within vicinity of site, e.g., rural, village, densely populated urban area. Land use in the area is primarily residential.				

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION		
01 STATE	02 SITE NUMBER	

	PARI 3 - WAIER,	DEMOGRAPHIC, AI	AD ENVIKUNMEN I A	LUAIA	DC	14
VI. ENVIRONMENTAL INFORMATION						
01 PERMEABILITY OF UNSATURATED ZONE (Check one) 10-5						
A 10-6 - 10-8 cm/sec	□ 8. 10 ⁻⁴ - 10 ⁻⁶ c			D GREATER	гнан 10 ⁻³ сп	1/sec
02 PERMEABILITY OF BEDROCK (Chec	k one)		10 ⁻⁵ to	10-3		
∏ A. IMPERMEABLE (Less than 10 ⁻⁶ cm/sec)	B. RELATIVE (10 ⁻⁴ - 16	LY IMPERMEABLE (7-6 cm/sec)	C. RELATIVELY	PERMEABLE	D. JERY PER igreater t	MEABLE han 10 ⁻² cmisec)
03 DEPTH TO BEDROCK	04 DEPTH OF CONTAMINA		05 SOIL pH			
<u>unknown</u> (ft;	<u> </u>	known (ft)		nown	<u> </u>	
06 NET PRECIPITATION 0 6.73 (in)	7 ONE-YEAR 24-HOUR RAINI 2.7		08 SLOPE SITE SLOPE average 20 %	direction of site scor	PE TERI	RAIN AVERAGE SLOPE
09 FLOOD POTENTIAL N/A		10 N/A				
SITE IS IN	YEAR FLOOD PLAIN		ARRIER ISLAND, COASTAL I	HIGH HAZARD AREA, RIVE	RINE FLOODW	ΔY
11 DISTANCE TO WETLANDS (5-acre m.	inimum)		12 DISTANCE TO CRITICA	AL HABITAT (of endangere	d species)	
ESTUARINE	ОТ	+E R		> 3		(mı)
AN/A	(mi) B. <u>3</u>	(mi)	ENDANGERED SPECIE	· · · · · · · · · · · · · · · · · · ·		
DISTANCE TO: RESIDENTIAL AREAS: NATIONALISTATE PARKS, COMMERCIAL INDUSTRIAL A CO.1 (mi) B. CO.1 (mi) C (mi) D (mi)						
The site generally slopes northeastwardly toward an on-site ravine that is located in the center of the landfill and runs in a north-south direction.						
VII. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)						
Tompkins, M.D. Prince Appropriation Data, Number 13, 1983.	George's County G Observation Well	roundwater Info Records and We	rmation:Well Red 11 Logs. Maryld	and water Resour	ces Basi	c Data Report
Vokes, H.E., and J. Edwi NUS FIT 3. Site inspe USGS Topographyc Maps. VA. and Alexandria. D.	ards, Jr., Marylan ction; site visit Anacostia, D.C. C., MD, and VA.	nd Geological S . TDD No. F3-9 , MD, Washingto	urvey, Geography 005-31, June 27 n West, D.C., M	y and Geology of D ¹⁹⁹⁰ d VA, Wash	Maryland	St, D.C., MD, and

EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION

I	I. IDENTIFICATION		
ſ	O1 STATE	02 SITE NUMBER	

		PART 0 - SANIF	LE AND TIELD INTONNA TION	DC	1 14	
II. SAMPLES TAK	EN					
CAMPLE TYPE	OT NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO		Q.	B ESTIMATED DATE RESULTS AVAILABLE	
GAGUNDWATER						
SURFACE WATER	3	Organic were sent	to Clayton Environmental		currently	
NASTE		Inorganic were se	nt to Rocky Mountain Analysis			
≟.R						
RUNOFF						
SPILL						
SOIT	10	Organic were sent	to Clayton Environmental		currently	
/EGETATION		Inorganic were se	nt to Rocky Mountain Analysis			
PER						
III. FIELD MEASUR	EMENTS TAKEN					
] tyeg		02 COMMENTS				
HNU		A background read were recorded.	ing of 0.2 ppm was recorded; n	o readings a	bove background	
radiation min	i-alert		background were recorded.			
IV. PHOTOGRAPH	S AND MAPS					
31 148E [X GROUND	AERIAL	42 11 (331 (35) 41	ne, Pennsylv		
03 MAPS	04 LOCATION OF MAPS					
MO NO	NO NUS FIT 3 Wayne, Pennsylvania					
V OTHER FIFE D DATA COLLECTED (Provide parrative description)						
V. OTHER PIECO O	A TA CULLECTED (Provide	harrative description)				
N/A						
n.						
VI SOUPCES OF	VI. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)					
						
NUS FIT 3. Site inspection; site visit. TDD No. F3-9005-31, June 27, 1990.						

EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 7 - OWNER INFORMATION

I. IDENTIFICATION		
01 STATE	02 SITE NUMBER	
DC	14	

II. CURRENT OWNER(S)			PARENT COMPANY (if a	PARENT COMPANY (if applicable)			
) NAME 02 D & 9 NUMBER			BER 10 NAME		11 D&BNUMBER		
Government of the Distr	ict of Columbia, M	lunicipal Ce	nter N/A				
33 STREET ADDRESS IP O Box, NFD #		04 SIC C	ODE 12 STREET ADDRESS (P.O. BOX	€ RFD # Etc.)	13 SIC CODE		
1301 E Street Northwest					<u>l</u>		
US CTY Washington	06 STATE DC	07 ZIP CODE 20032	14 C.TY	'S STATE	:6 ZIP CODE		
31 NAME		02 D&BNUM	BER 10 NAME		11 O&B NUMBER		
N/A			N/A				
33 STREET ADDRESS (P.O. Box. RFD #	(, Etc.)	04 SIC (ODE 12 STREET ADDRESS (P.O. Ba	x, RFD #, Etc.)	13 SIC CODE		
35 C(TY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	:6 ZIP CODE		
-)1 NAME		02 D&8 NUM	BER 10 NAME	<u> </u>	11 O & B NUMBER		
N/A			N/A				
)3 STREET ADDRESS (P.O. Box. RFD #	Etc)	04 SiC (ODE 12 STREET ADDRESS (P.O. Bo.	x, RFD #. Etc.)	13 SIC CODE		
35 Cr*Y	C6 STATE	07 2 P CODE	14 CITY	'S STATE	16 ZIP CODE		
)1 NAME	<u></u>	02 D&BNUN	BER 10 NAME	i	11 D&B NUMBER		
N/A		<u> </u>	N/A				
03 STREET ADDRESS (P.O. Box, RFD #	f, Etc.)	04 SIC	CODE 12 STREET ADDRESS (P.O. Bo	x, RFO #. Etc.)	13 SIC CODE		
05 CTY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE		
III. PREVIOUS OWNERS(S) (List	most recent first)	<u> </u>	IV. REALTY OWNER(S)	(if applicable, list most recent first)			
01 NAME		02 D & 9 NUM	1	18,44,	11 D&BNUMBER		
N/A	···	<u></u>	N/A				
03 STREET AODRESS (P.O. Box. RFO #.	Etc.)	Q4 SIC C	ODE 12 STREET ADDRESS (P.O. Box	x, RFD #, Etc.)	13 SIC CODE		
OS CTY	J6 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE		
01 NAME		02 0 & B NUM	BER 10 NAME		11 D & B NUMBER		
N/A		<u> </u>	N/A	· .			
03 STREET ADDRESS (P.O. Box, RFD #.	Etc.)	04 SIC C	ODE 12 STREET ADDRESS (P.O. Box	s, RFD #. Etc.)	13 SIC CODE		
US CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE		
01 NAME		02 D&BNUM	BER 10 NAME		11 D & B NUMBER		
N/A			N/A				
03 STREET ADDRESS (P.O. Box, RFD #	€tc.)	04 SIC C	ODE 12 STREET ADDRESS (P.O. BOX	x, RFD #, Etc.)	13 SIC CODE		
0s CiTY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE		
	•		I		1		

NUS Corporation. Preliminary assessment report. TDD No. F3-8904-20, December 29, 1989.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 8 - OPERATOR INFORMATION

I. IDENTIFICATION				
01 STATE	02 SITE NUMBER			
nc n	I 14			

									
IL CURRENT OPERATOR (P	rovide if different f	rom owner)			OPERATOR'S PARENT CO	OMPANY (if applica	bie)		
): 4256 N/A			02	D & 9 NUMBER	O NAME			11	S 8 NUMBER
13 STREET ADDRESS (P.O. Box. R)	FD # Etc.)		•	04 SIC CODE	12 STREET ADDRESS (P.O. Box. I	RFD # Etc.)			13 SIC CODE
US CTY	-	26 STATE	07	Z:P CODE	14 CITY		15 STATE	16	ZIP CODE
J8 YEARS OF OPERATION	09 NAME OF O	WNER		<u> </u>				'	
III. PREVIOUS OPERATOR	(5) (List most recen	t first; provide if	differ	ent fram owner)	PREVIOUS OPERAT	OR'S PARENT CO	MPANIES (if	applica	ible)
J1 NAME			02	D & B NUMBER	10 NAME			11	& B NUMBER
Government of the Di	strict of C	olumbia, M	nie	cipal Center	N/A			1	
03 STREET ADDRESS (P.O. 80x, R) 1301 E Street Northw				04 SIC CODE	12 STREET ADDRESS (P.O. BOX, I	RFD #. Etc.)		-	13 SIC CODE
as cry Washington		Q6 STATE DC	07	ZIP COD€ 20032	14 CITY		15 STATE	16	ZIP CODE
38 FEARS OF OPERATION 1982 to 1989	09 NAMEOFO D.C. Govern U.S. Govern		to to	1989 1987					
J1 NAME				D & 8 NUMBER	10 NAME			11	D & B NUMBER
N/A			L		N/A				
03 STREET ADDRESS (P O Box, RI	FD #, Etc.)			04 SIC CODE	12 STREET ADDRESS (P.O. Box, I	RFD #, Etc.)			13 SIC CODE
35 CITY		06 STATE	07	ZIP CODE	14 CITY		15 STATE	16	ZIP CODE
08 YEARS OF OPERATION	09 NAME OF O	WNER	<u></u>					•	
01 NAME N/A	<u> </u>		02	D & B NUMBER	10 NAME N/A			11	O & B NUMBER
33 STREET ADDRESS (P.O. Box. R	FD #, Etc.)		-	04 SIC CODE	12 STREET ADDRESS (P.O. Box.	RFO # Etc)			13 SIC CODE
15 CTY	· · · · · · · · · · · · · · · · · · ·	Q6 STATE	07	Z'P COOE	14 GITY		15 STA*E	16	ZIP CODE
J8 FEARS OF OPERATION	09 NAME OF O	WNER							
IV. SOURCES OF INFORMA	ATION (Cite specif	ic references, é.a	, stat	e files, sample anal	ysis, reports)				
					<u></u>				
NUS Corporation F	Proliminary	accacement	י אם	nort IND	No. F3-8904-20. Dece	mhar 20 1980			

~

POTENTIAL HAZARDOUS WASTE SITE

I. IDENTIFICATION				
01 STATE	02 SITE NUMBER			
n.c	1.0			

V	EPA	SITE INSPECTION REPORT PART 9 - GENERATOR/TRANSPORTER INFORMATION		01 STATE DC	02 SITE N	UMBER		
II. ON-SITE GENER	ATOR							
N/A			02	O & B NUMBER				*
DB STREET ±DDRESS IP	' () - Важ. ЯЕО #, Etc.)			04 SIC CODE				
35 C TY		06 STATE	07	Z'P CODE]			
III. OFF-SITE GENE	RATOR(S)							
N/A			02	D & 9 NUMBER	DI NAME N/A		0.2	D & B NUMBER
33 STREET AGORESS (P	O 80x, RFD #, Etc.)			04 SIC CODE	03 STREET ADDRESS (P.O. Box RFD #. Etc	rc)		04 SIC CODE
9 5 C.*Y		9 6 STATE	07	Z'P CODE	OS CITY	06 STAT	re 97	ZIP CODE
DI NAME N/A			02	D & 9 NUMBER	OT NAME N/A		02	D & B NUMBER
23 STREET ADDRESS (P	O Box. RFD # Etc.)			04 SIC CODE	03 STREET ADDRESS (P.O. Box. RFD #, Eco	(c)		04 SIC CODE
05 CITY		06 STATE	07	ZIP CODE	OS CITY	O6 STAT	rE 07	ZIP CODE
IV. TRANSPORTER	(S)						<u>-</u>	
DI NAME			02	D & B NUMBER	01 NAME		92	D & B NUMBER
N/A			\perp		N/A		[
03 STREET ADDRESS IP	O Box RFD ≠ Etc)			04 SIC CODE	03 STREET ADDRESS (P.O. Box RFD # Etc	c)		04 SIC COO€
25 CITY		06 STATE	37	ZIP CODE	as CITY	0 6 STAT	5 37	ZIP CODE
31 NAME		<u> </u>	02	D & B NUMBER	01 NAME		92	D & B NUMBER
N/A				<u></u>	N/A			
03 STREET ADDRESS (P	O Box. HFD #. Etc.)			04 SIC CODE	03 STREET ADDRESS (P O Box, RFD #, Etc	c.)		34 SIC CODE
05 CITY		OS STATE	07	ZIP CODE	as city	06 STATI	E 27	ZIP CODE
V. SOURCES OF IN	IFORMATION (Cite spec	cific references, e ç	g., state	files, sample anal	ysis, reports)			

2	EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

I. IDENTIFICATION					
D1 STATE	02 SITE NUMBER				
DC	14				

	PART 10 - PAST RESPONSE ACTIVITIES	DC	14
II. PAST RESPONSE ACTIVITIES			
31	32 DATE	33 4GENCY	
None reported.			
DI B TOMPORARY WATER SUPPLY PROVIDED)2 04TE	D AGENCY	
None reported.			
2' : SERMANENT WATER SUPPLY PROVIDED	12 DATE	03 AGENCY	
14 DESCRIPTION			
None reported.)2 DATE	03 AGENCY	
04 DESCRIPTION	J2 DATE	03 AGENC!	
None reported.			
J1 E CONTAMINATED SOIL REMOVED 34 DESCRIPTION)) DATE	33 AGENCY	
None reported.			
)	;₹ DATE	03 AGENCY	
None reported.			
3) G WASTE DISPOSED ELSEWHERE 34 DESCRIPTION	DATE	03 AGENCY	
None reported.			
31 H ON-SITE BURIAL 34 DESCRIPTION	DATE	03 AGENCY	
None reported.			
01 I N SITU CHEMICAL TREATMENT 04 DESCRIPTION	3TAG SC	03 AGENCY	
None reported.			
01 . N SITU BIOLOGICAL TREATMENT	OZ DATE	OF AGENCY	
J4 DESCRIPTION None reported.			
21 - TISTED PHYSICAL TREATMENT)2 DAFE	03 AGENCY	
None reported.			
31NCAPSULATION)2 DATE	03 AGENCY	
24 DESCRIPTION None reported.			
01 M. FMERGENCY WASTE TREATMENT	DATE	03 AGENCY	
24 DESCRIPTION None reported.			
01 T COTOFF WALLS	DATE	03 AGENCY	
04 DESCRIPTION			
None reported.		01 10710	
01 O EMERGENCY DIK NG/SURFACE WATER DIVERSION 04 DESCRIPTION	32 DATE	03 AGENCY	
None reported.			
. 31 P CUTOFF TRENCHES/SUMP 34 DESCRIPTION	J2 DATE	03 AGENCY	
None reported.			
01 Q SUBSURFACE CUTOFF WALL 34 DESCRIPTION	32 DATE	03 AGENCY	
None reported.			

,	\$		
,	PAST	RESPON	5
1	□ a DESCRI	BARRIER PTION NOI	

EDA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

l.	IDENTIF	ICATION	

STATE DO	02	SITE	NUMBER

EPA	PART 10 - PAST RESPONSE ACTIVITIES	o bc 1 €	14
II. PAST RESPONSE ACTIVITIES (Continued)			
DI RESERVENCE WALLS CONSTRUCTED 14 DESCRIPTION None reported.	32 DATE	13 AGENCY _	
OF CAPPING COLERING	:2 DATE	;3. →GENCY	
None reported.			
DI r = 301K TANKAGE REPAIRED 14 DESCRIPTION None reported.	12 DATE	33 AGENCY _	
of GROUT CURTAIN CONSTRUCTED OBSCRIPTION None reported.)2)ATE)3 AGENCY _	
DI . BOTTOM SEALED DA DESCRIPTION None reported.	DATE	33 AGENCY _	
DI N GASCONTROL 34 DESCRIPTION None reported.	12 DATE	33 AGENCY	
DI x PRECONTROL DESCRIPTION None reported.	DATE	J3 AGENCY	
01 Y LEACHATE TREATMENT 04 DESCRIPTION None reported.	DATE)3 AGENCY	
0)	J2 DATE	33 AGENCY _	
21	32 DATE	23 AGENCY _	
D1	35 DY2E	13 AGENCY	
OI 3 OTHER REMEDIAL ACTIVITIES OF DESCRIPTION None reported.	DATE)3 AGENCY _	
III. SOURCES OF INFORMATION (Cite specific refe	erences, e.g., state files, sample analysis, reports)		
NUS Corporation. Preliminary ass	essment report. TDD No. F3-8904-20, December	ber 29, 1989.	

POTENTIAL HAZARDOUS WASTE SITE

I. IDENTIFICATION					
Of STATE	OZ SITE NUMBER				
DC	L 14				

	EPA	SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION	01 STATE 02 SITE NUMBER DC 14	_
II. ENFORCEMENT I	NFORMATION			
31 PAST REGULATORY A	CTION 🗶 YES 🗌 NO			_
22 DESCRIPTION OF FEDE	RAL, STATE LOCAL REGULATORY'S	ENFORCEMENT ACTION		
of the fill π above the CDC	naterial deposited on 's recommended limit	EPA Region III, Waste Management Division, C St. Elizabeth's Hospital grounds by D.C. 2, of 1 ppb in soil for residential areas. Ele d in sediments and leachate.	3,7,8-TCDD was measured	
No remedial a	action has been taken	to date.		

III. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

NUS Corporation. Preliminary assessment report. TDD No. F3-8904-20, December 29, 1989.
Smith, Richard, Chief Solid Waste Disposal Division, Government of the District of Columbia, with Linda Ciarletta, NUS FIT 3. Meeting, June 27, 1990.

SECTION 6

-

The Maine. St. Citzabeth Schospital

TDD No.: <u>F3-9005-31</u>

6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0

United States Geological Survey. Anacostia, D.C. - Maryland Quadrangle, 7.5 Minute Series.
 <u>Topographic Map.</u> 1965, photorevised 1979. Combined with Washington West, D.C. Maryland - Virginia Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> 1965, photorevised
 1983; Washington East, D.C. - Maryland - Virginia Quadrangle, 7.5 Minute Series.
 <u>Topographic Map.</u> 1965, photorevised 1983; and Alexandria, D.C. - Maryland - Virginia
 Quadrangle, 7.5 Minute Series. <u>Topographic Map.</u> 1965, photorevised 1983.

- NUS Corporation, FIT 3. Preliminary assessment report. TDD No. F3-8904-20, December 29, 1989.
- 3. Smith, Richard, Chief, Solid Waste Disposal Division, District of Columbia Department of Public Works, with Richard Sheldon, NUS FIT 1, Meeting. July 20, 1989.
- 4. NUS Corporation, FIT 3. Site inspection; site visit. TDD No. 9005-31, June 27, 1990.
- 5. Smith, Richard, Chief, Solid Waste Disposal Division, District of Columbia Department of Public Works, with Linda Ciarletta, NUS Ft 3. Meeting. June 27, 1990.
- 6. Delauder, Earl, Superintendent, k95 Energy Resource Recovery Facility, with Linda Ciarletta, NUS FIT 3. Telecons. July 19 and 25, 1990.
- 7. Smith, Richard, Chief, Selid Waste Disposal Division, District of Columbia Department of Public Works, with Linda Ciarletta, NUS FIT 3. Telecons. May 11 and 21 and July 19 and 25, 1990.
- 8. United States Government, Represented by Saint Elizabeth's Hospital, as Granted to the District of Columbia Government, Department of Environmental Services. Revocable Permit No. I-83. October 19, 1982.
- The United States Government, Represented by Saint Elizabeth's Hospital, as Granted to the District of Columbia Government, Department of Environmental Services. Revocable Permit No. 78-1, October 21, 1977.

Site Name: <u>St. Elizabeth s Hospitai</u>

TDD No.: F3-9005-31

10. Clark, Leo J., et al., United States Environmental Protection Agency. Summary Report; Dioxin Sampling at St. Elizabeth's Hospital, Washington, D.C. March 6 and 8, 1985.

- 11. Versar, Incorporated. Washington Ash Samples, Dioxin Analysis Report. January 15, 1984.
- 12. Austin, John, United States Environmental Protection Agency. Preliminary Quality Assurance Review for Dioxin, SIS Isomers, Saint Elizabeth's Hospital. July 10, 1985.
- 13. Margolis, Stephen, United States Department of Health and Human Services. Review of Dioxin Sampling at Saint Elizabeth's Hospital. October 1, 1985.
- 14. Margolis, Stephen, United States Department of Health and Human Services. Health Consultation, Saint Elizabeth's Hospital. November 4, 1985.
- 15. Markham, Steve L., United States Environmental Protection Agency. Inorganic Data Quality Assurance Review, Case No. 5256/2057C, Sant Frizabeth's Hospital. March 6, 1986.
- 16. Sands, Charles, United States Environmental Protection Agency. Organic Data Quality Assurance Review, Case No. 5256, Sain Elizabeth's Hospital, April 29, 1986.
- 17. Bernarding, Jay, Versar, Incorporated. EP Toxicity Analysis of Ash Samples. January 4, 1989.
- 18. Federal Registry DataBase System. Public Water Suppliers in Region III, District of Columbia, Maryland, and Virginia. 1988.
- 19. Tompkins, M.D., Maryland Department of Natural Resources, Maryland Geological Survey. Prince George's County Ground-Water Information: Well Records, Chemical-Quality Data, Pumpage, Appropriation Data, Observation Well Records, and Well Logs. Water Resources Basic Data Report No. 13, 1983.
- Ways, Harry, District of Columbia Water and Sewerage Commission, with Jill Hartnell, NUS FITTelecon. August 3, 1990.
- 21. Testerman, Cliff, Arlington County Water Company, with Jill Hartnell, NUS FIT 3. Telecon August 3, 1990.

TDD No.: F3-9005-31

22. Kingsbury, John, Virginia American Water Company, with Jill Hartnell, NUS FIT 3. Telecon. August 3, 1990.

- 23. Thornton, Wendy, Fairfax County Water Authority, with Jill Hartnell, NUS FIT 3. Telecon. August 3, 1990.
- 24. Cameron, Craig, Fairfax County Water Authority, with David Doran, NUS FIT 3. Telecon. September 12, 1986.
- 25. Maurath, Katherine, Washington Suburban Sanitary Commission, with Robert Good, NUS FIT 3. Telecon. August 31, 1989.
- 26. Washington Suburban Sanitary Commission. Your Water from Source to Supply. Brochure.
 October, 1988.
- 27. Hager, Phil, Prince George's County Research Department, with Linda Ciarletta, NUS FIT 3.
 Telecon. August 10, 1990.
- 28. Collier, Tim, Water Hygiene Branch Ckief, District of Columbia Government Consumer Regulatory Affairs, with Scott Brit, INVS NT 3. Telecon. December 11, 1987.
- 29. Johnson, Charles, District of Columbia Government Department of Public Works, with Linda Ciarletta, NUS FIT 3. Telecon. October 4, 1990.
- 30. United States Department of the Interior. Anacostia, D.C. Maryland Quadrangle, 7.5 Minute Series. National Wetlands Inventory Map. 1981. Combined with Washington East, Maryland D.C. Quadrangle, 7.5 Minute Series. National Wetlands Inventory Map. 1981; Washington West, D.C. Maryland Virginia Quadrangle, 7.5 Minute Series. National Wetlands Inventory Map. 1981; and Alexandria, Virginia D.C. Maryland Quadrangle, 7.5 Minute Series. National Wetlands Inventory Map. 1977.
- 31. Bach, W., J.S. Rosenstein, and P.R. Seaber, Editors. Hydrogeology. In <u>The Geology of North</u>

 America. Volume O-2, Geological Society of America, 1988.
- 32. Maryland Geological Survey. Geologic Map of Maryland. 1968.

TDD No : F3-9005-31

33. Vokes, H.E., and J. Edwards, Jr., Maryland Geological Survey. <u>Geography and Geology of Maryland</u>. Bulletin 19, reprinted 1974.

- 34. National Oceanic and Atmospheric Administration. <u>Climatography of the United States</u>.

 No. 20, Climate of Maryland. Summary of College Park, Maryland. 1989.
- 35. United States Department of Commerce, National Climatic Center. <u>Climatic Atlas of the United States</u>. 1979.
- 36. United States Department of Commerce, United States Printing Office. Rainfall Frequency Atlas of the United States. Technical Paper No. 40, 1963.
- 37. Rand McNally. Commercial Reference Map and Guide. Delaware/Maryland and D.C. 1983.
- 38. Rand McNally. Commercial Reference Man and Guide. Virginia. 1983.
- 39. Wolflin, John, United States Department of the Interior, Fish and Wildlife Service, to Garth Glenn, NUS FIT 3. Correspondence. 2009;129,1990.

SECTION 7

TDD No.: F3-9005-31

7.0 LABORATORY DATA

7.1 Sample Data Summary

The attached data summary contains only compounds which were identified as detected in at least one sample. The complete list of compounds analyzed for, their results, and the associated detection limits are located as an appendix. Results for tentatively identified compounds appear following the organic data section of this report.

The following codes are used in the data summary to indicate the confidence in the laboratory results:

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds)

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

B = Not detected substantially above the level reported in laboratory or field blanks.

R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

N = Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

J = Analyte present. Reported value may not be accurate or precise.

K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.

E = Analyte present. Reported value may be biased low. Actual value is expected to be higher.

UJ = Not detected, quantitation limit may be inaccurate or imprecise.

UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

SITE NAME: St. Elizabeth's Hospital SAMPLING DATE(s): 06-27-90 STATE/COUNTY CODE: 0011
TDD NUMBER: F3:9005:31 CASE NUMBER:14399 EPA NUMBER: DC14
LAB NAMES: Organic Clayton Novi Inorganic Rocky Mountain Analytical

	SAMPLE NUMBER:	CEN86	CENB7	CEN89	CEN90	CEN76	CEN77
	SAMPLE ID:	S w - 1	Sw - 2	Sw-3	Aq tilank	S-1	S-2
	LOCATION:	drain.strm	drain.stream	duplicate of	aqueous	omisite surf	unsite sunf.
		upstream	dwnstr,offst	Sw-2	blank	rest. access	rest, access
		rest, access	open access			sandy loam	dark brown
	_	∵lr,no_odor	oily,foamy	- a		ltbrw.no udr	alotofdebris 7.5
	PH:	6.0	5.6	5.6	3.7	7.0	
	FIELD MEASUREMENTS:	225 umhos/cm	5220umhos/cm	5220umnos/um	1 contro/cm	none stiky	none≯bkg 85.0%
	PERCENT SOLIDS:					93.0%	85.0%
PE OF DATA:	VOLATILES					1,1	1.2
	DILUTION FACTOR:	1.0	1.0	1.0	1, μ	1,1	1.2
T, LIMIT	SAMPLE NUMBER:	CEN86	CEN87	CEN89	CENSO	CEN76	CEN77
<u>)∟ (œ-ID∟)</u>	UNITS:	ug/!	ug/1	ug/1	<u></u>	<u>ug/kg</u>	ug/kg
	ylene chlaride	3.00 B				36,00 B	380.00R@
10.00 aceto						26.20	110.008@
_ <u>5.00</u> , <u>carb</u> i	<u>m_disulfide</u>					85.00 J	280.00J@
5.00 chlor			0.80 J	0. 9 0 J			
10.00 2 6at							3 60
<u>5_00</u> Hid	ឬ <u>កំព័ត្តព្រះគំពេ</u>						<u>3.00</u>
	achloroethene					19.00 J	52.00Je 70.00 J
5.00 talue	-					13.00 J	3.00 J
							12.00 B
5.00 styre							17.00 J
5.00 total							17.00 3
PE OF DATA:		61 - 73	0.0	0.0	1.0	71.0	78 . U
	DILUTION FACTOR:	Ú.Ú	0.0	۱۲. ن	1.0	71.0	70,0
t. ∟IMIT	SAMPLE NUMBER:	CEN86	CEN87	CEN89	CEN90	CEN76	CEN77
પૂ∟ (ლ≔IDૂ⊾)	un115:	n/ <u>a</u>	n/ <u>a</u>	n/a	ug/1	ug/kg	ug/kg
10.00 4-met							
10.00 napht							
10.00 2-met	thylnaphthalene						
10.00 acena							
10.00 diber							
1 <u>0.00_flaor</u>							
10.00 phena						230.00 J	250.00 J
10.00 anthr							
10.00 di-n-	-butyl phthalate					270 00	270 00
10.00 fluor	ranthene					370.00 J	370.00 J
10.00 fluor 10.00 pyrer	ranthene ne					630.00 J	550.00 J
10.00 fluor 10.00 pyrer 10.00 benza	ranthene ne <u>p(a)anthracene</u>					630.00 J 220.00 J	550.00 J 270.00 J
10.00 fluor 10.00 pyrer 10.00 benzo 10.00 bis(2	ranthene ne p <u>(a)anthracene</u> 2~ethylnexyl) phthalat					630.00 J 220.00 J 580.00 B	550.00 J 270.00 J 760.00 B
10.00 fluor 10.00 pyrer 10.00 benzo 10.00 bis (2 10.00 chrys	ranthene ne o <u>(a)antmacene</u> o <u>rethylhexyl)</u> phthalat sene	e				630.00 J 220.00 J	550.00 J 270.00 J 760.00 B 280.00 J
10.00 fluor 10.00 pyrer 10.00 benzo 10.00 bis(2 10.00 chrys	ranthene ne o <u>(a)anthracene</u> Zethylhexyl) phthalat sene -outyl phthalate	e				630.00 J 220.00 J 580.00 B 280.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B
10.00 fluor 10.00 pyrer 10.00 benzo 10.00 chrys 10.00 diens	ranthene ne o <u>(a)anthracene</u> 2~ethylhexyl) phthalat sene -octyl phthalate o(b)fluoranthene	e				630.00 J 220.00 J 580.00 B 280.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 chrys 10.00 dienz 10.00 benz 10.00 benz	ranthene ne o(a)anthracene 2~ethylhexyl) phthalat sene -octyl phthalate o(b)fluoranthene o(k)fluoranthene	e				630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 bis(2 10.00 di-n- 10.00 benzo 10.00 benzo 10.00 benzo	ranthene ne o(a)anthracene 2~ethylhexyl) phthalat sene -octyl phthalate o(b)fluoranthene o(k)fluoranthene o(a)pyrene	e				630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J 290.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J 260.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 bis(3 10.00 di-n- 10.00 benzo 10.00 benzo 10.00 benzo 10.00 inder	ranthene ne o(a)anthracene 2~ethylhexyl) phthalat sene -octyl phthalate o(b)fluoranthene o(k)fluoranthene o(a)pyrene no(1,2,3-cd)pyrene	e				630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 chrys 10.00 di-n 10.00 benzo 10.00 benzo 10.00 inder 10.00 dien	ranthene ne o(a)anthracene 2~ethylhexyl) phthalat sene outyl phthalate o(b)fluoranthene o(a)pyrene no(1,2,3-cd)pyrene stalah)anthracene	e				630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J 290.00 J 130.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J 250.00 J 160.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 chrys 10.00 di-n- 10.00 benze 10.00 benze 10.00 inder 10.00 diber	ranthene ne o(a)anthracene 2(ethylhexyl) phthalat sene o(b)fluoranthene o(a)pyrene no(1,2,3-cd)pyrene o(a,h)anthracene o(a,h)anthracene	e				630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J 290.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J 260.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 chrys 10.00 di-n- 10.00 benze 10.00 benze 10.00 inder 10.00 diber	ranthene ne o(a)anthracene 2~ethylhexyl) phthalat sene o(tyl phthalate o(b)fluoranthene o(k)fluoranthene o(a)pyrene no(1,2,3-cd)pyrene sela,h)anthracene o(g,h,i)perylene etsfillets	e				630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J 290.00 J 130.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J 250.00 J 160.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 bis(2 10.00 di-n- 10.00 benzo 10.00 benzo 10.00 benzo 10.00 inder 10.00 diber	ranthene ne o(a)anthracene 2(ethylhexyl) phthalat sene o(b)fluoranthene o(a)pyrene no(1,2,3-cd)pyrene o(a,h)anthracene o(a,h)anthracene	e				630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J 290.00 J 130.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J 250.00 J 160.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 chrys 10.00 dienz 10.00 benz 10.00 benz 10.00 inder 10.00 inder 10.00 diber 10.00 diber 10.00 diber 10.00 diber	ranthene ne o(a)anthracene 2~ethylhexyl) phthalat sene -octyl phthalate o(b)fluoranthene o(k)fluoranthene o(a)pyrene no(1,2,3-cd)pyrene seta,h)anthracene o(g,h,i)perylene ht offclots offollock	0.0	 (r. Ü	0.0	1.0	630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J 290.00 J 130.00 J	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J 250.00 J 160.00 J
10.00 fluor 10.00 pyrer 10.00 bis(2 10.00 bis(2 10.00 di-n- 10.00 benze 10.00 benze 10.00 inder 10.00 diber	ranthene ne o(a)antmagene 2~ethylmexyl) phthalat sene outyl phthalate o(b)fluoranthene o(a)py(ene no(1,2,3-cd)pyrene seta.h)anthracene o(g,h.i)perylene Ft sTIClots outylene o	e	U.Ü CENB7		1.0 CEN9U	630.00 J 220.00 J 580.00 B 280.00 J 280.00 J 240.00 J 290.00 J 130.00 J 110.00 J 340.0	550.00 J 270.00 J 760.00 B 280.00 J 130.00 B 310.00 J 250.00 J 250.00 J 160.00 J 210.00 J

mem result reported from remanalysis

SELECTED SAMPLE ORDER SITE NAME: St. Elizabeth's Hospital TDD NUMBER: F3 9005-31

SAMPLING DATE(5): 06:27-90 CASE NUMBER: 14399

STATE/COUNTY CODE: EPA NUMBER:

0011 DC14

LAB NAMES: Organic-Clayton Novi Inorganic-Rocky Mountain Analytical

	SAMPLE NUMBER:	CEN86	CEN87	CEN89	CEN90	CEN76	CEN77
	SAMPLE ID:	Sw-1	Sw-2	ヒーまど	Aq~blank	S - 1	S-2
	LOCATION;	drain.strm	drain.stream	duplicate of	aqueous	on-site surf	onsite surf.
		upstream	dwnstr,offst	5w-2	b Lank	rest. access	rest. access
		rest. access	open access			sandy loam	dark brown
		cir,no odor	oily,foamy			ltbr∺.no odr	alotofuebris
	PH:	6.0	5.6	5.6	3.1	7.0	7.5
	FIELD MEASUREMENTS:	225 umhos/cm	5220umhos/cm	5/20umhos/cm	1 umho/cm	none •bkg	none⊅bkg
	PERCENT SOLIDS:					93.0%	85.U%
TYPE OF DATA:	PESTICIDES						
	DILUTION FACTOR:				1.0	340.0	380.0
DET. LIMIT	SAMPLE NUMBER:	CEN86	CEN87	CEN89	CENSO	CEN76	CEN77
CRQL (w=IDL)	UNITS:	n/a	n/a	n/a	ug/1	ug/kg	ug/kg
0.10 4,4	-DDT					53.00 R	

Comments:

e= result reported from re-analysis

SITE NAME: St. Elizabeth's Hospital SAMPLING DATE(s): 06-27-90 STATE/COUNTY CODE: 0011 CASE NUMBER: 14399 TOD NUMBER: +3-9005-31 EPA NUMBER: DC14 LAB NAMES: Organic Clayton Novi Inorganic Rocky Mountain Analytical

	SAMPLE NUMBER:	CEN78	CEN79	CENSO	CEN81	CEN82	CEN83
	SAMPLE IU:	5-3	Sd-1	7-7	5-6	S-7	2-8
	LOCATION:	uttsite surf	sediment	unstrest.add	Duplicate of	uns,rest.acc	ons, rest, acc
		composite	sameloc.Swrl	20"subsoil	5-5	18" subsoil	12"sub suil dik brwn
		medbrw rocky open access	light brown claylike	dik.brw.clay pily smell		drk brwn rocky,sandy	rocky,sandy
	PH:	6.5	5.7	7.1	7.0	7.3	7 , 4
	FIELD MEASUREMENTS:	none - bkg	none>bkg	none>bkg	none>bkg	none>bkg	none≥bkg
E OF DATA:	PERCENT SOLIDS:	9u. Ú%	47.0%	84.0%	89.0%	87.0%	90.0%
L OF DATA.	DILUTION FACTOR:	1.1	2.1	1.2	1.1	1.1	1.1
LIMIT	SAMPLE NUMBER:	CEN78	CEN79	CENBO	CEN81	CEN82	CEN83
(w=IDL)	UNITS: lene chloride	ug/kg 48.00R⊎	ug/kg 5.00 B	ug/kg 3.00 в	ug/kg 6.00 B	ug/kg 13.00 B	15.00 B
10.00 methy	iene chioride	40.008@	22.00 B	3.00 B	32,00 B	53.00 B	130.00 B
	ne n disulfide	12.00J@	22.QU D	10,00	6.00	37.00 J	27.00
5.00 chlori	aform	12.0000					
10.00 2-but							20.00
5.00 trien	<u>concethene</u>	· · · · · · · · · · · · · · · · · · ·			··	·	93.00
5.00 tetra		4.000				4.00 J	7.00
5.00 torue							
5.00 styre	ne						
5.00 total							15.00
E OF DATA:	SEMIVOLATILES						
	DILUTION FACTOR:	73.0	86.0	79.0	75.0	76.0	2200.0
. LIMIT	SAMPLE NUMBER:	CEN78	CEN79	CEN8O	CENBI	CEN82	CENB3
<u> </u>	: UNITS:	ug/kg	ug/kg	u <u>g</u> /kg	ug/kg	ug/kg	ug/kg
10.00 4-meti						510.00 J	
10.00 naphti						100.00 J	
10.00 2-metr	ny Inaphthalene					90.00 J 72.00 J	··············
10.00 acena _l						72.00 J 280.00N@	
10.00 fluore						450.00Ne	
10.00 phenar	nthrene	460.00L@	780.00J@			830.00 J	-
10.00 anthra	acene	87.00L@	170.00 J			120.00 J	
	outyl phthalate	310.00 B					
10.00 fluora		820.00L@	930.00J@			1300.00 J	
10,00 pyreni		1200.00 L	1400.00 @			1200.00	
	(a)anthracene	470.00L@ 460.00B@	500.00J@ 1100.00 B	440.008 u		<u>620.00</u> J 1900.00 B	12000.00 B
-10,00 bis(2 -10,00 chr√si	methylhexyl) phthalate	: 460.008⊚ 580.00 L	450.00 B	44U.UU 5 @		1900.00 B 550.00 J	12000.00 8
- 10.00 cmrysi - 10 00 di-5~4	octyl phthalate	500.00 L	430.00 J			JJU.00 J	
10.00 benzo	(b)fluoranthene	1000,00 L	1100.00 @			900.00	
	(k)fluoranthene	600.00L@	310.00 J			2900.00N⊎	
10.00 benzo	(a)pyrene	510.00 L	469.00 J			370.00 J	
	o(1,2,3 -ca)pyrene	390,00L@	250.00 J			94.00 J	
	z(a,h)anthracene	100.00 L				110.00N@	
<u>11.00 benzu:</u> E OF DATA:	<u>(ရေးကုန္ဂျပုံမွာျပုံသည်</u>	350.00 L	320.000			220.00 J	
	PESTICINES DIDITION FACTOR:	360.0	420.0	380.0	360.0	370.0	360.0
E OF DATA:			=		300.0		· · · -
		and the second					0500
. LIMI:	SAMPLE NOMBER:	CEN78 ug/kg	CEN79 ug/kg	CEN8O ug/kg	CEN81 ug/kg	CEN82 ug/kg	CEN83 ug/kg

SITE NAME: St. Elizabeth's Hospital TDD NUMBER: F3 9005 31 SAMPLING DATE(s): 06-27-90 STATE/COUNTY CODE: 0011 CASE NUMBER: 14399 EPA NUMBER:

DC14

LAB NAMES: Organic-Clayton Novi Inorganic-Rocky Mountain Analytical

	SAMPLE NUMBER:	CEN78	CEN79	CENBO	CEN81	CENB2	CEN83
	SAMPLE ID:	2-3	Sa-1	S · 5	5-6	S ~ 7	S 8
	LULATION:	offsite surf	sediment	ons,rest.acc	Duplicate of	ons,rest.acc	ons,rest,acc
		composite	sameloc.Sw-1	20″sabsail	S-5	18" subsoil	12"sub soil
		medbrw rocky	light brown	drk.brw.clay		drk brwn	drk brwn
		open access	claylike	oily smell		rocky,sandy	rocky, sandy
	PΗ:	6.5	5.7	7.1	7.0	7.3	7.4
	FIELD MEASUREMENTS:	none - bkg	none-bkg	none rbkg	none≥bkg	none-bkg	none≥bkg
	PERCENT SOLIDS:	90.0%	47.0%	84.0%	88.0%	87.0%	90.0%
PE OF DATA:	PESTICIDES						
	DILUTION FACTOR:	360.0	420.0	380.0	360.0	370.0	360.0
ET. LIMIT	SAMPLE NUMBER:	CEN78	CEN79	CENBO	CEN81	CEN82	CEN83
RQL (ĕ≔ID∟)	UNITS:	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg

0.10 4,4'-DDT Comments:

e= result reported from re-analysis

SELECTED SAMPLE URDER

SITE NAME: St. Elizabeth s Hospital SAMPLING DATE(s): 06-27-90 STATE/COUNTY CODE:

TDD NUMBER: F3-9005-31 CASE NUMBER:14399 EPA NUMBER:
LAB NAMES: Organic-dlayton Novi Inorganic-Rocky Mountain Analytical 0011 DC 14

	AMPLÉ NUMBER:	CEN84	CEN88	CEN85	
	SAMPLE ID:	S-back	Sa-2	Tripblk	
	LOCATION:	backgrd.	Sediment	Trip blank	
		surface	same locSw-2	blank for	
		rest.access	openacc.offs red.sandv	solids	
	PH:	brw,silt,cly 6.3	red,sandy 6.2		
FIELD	MEASUREMENTS:	o.s none≥bky	none > bkg	none Fbkg	
	RCENT SOLIDS:	8.0%	44.0%		
· · = - · · · · · ·	LATILES				
DIC	UTION FACTOR:	1,2	2.3	1.0	
ET. LIMIT S	AMPLE NUMBER:	CEN84	CENBB	CEN85	
RQL (@=IDL)	UNITS:	ug/kg	ug/kg	ug/l	
5.00 methylene c	nloride	5.00 B	10.00 B	2.00 J	
10.00 acetone 5.00 carbon disu	1 # 4 .4	23,00 B 4.00 J	2.00 J		
5.00 carbon dist	iriue	4.00 3	2.00 3		
10.00 2-butanone					
5.00 trianlaraet	iene			_	
5.00 tetrachloru	thene				
5.00 toluene					
5.00 ethylbeozen 5.00 styrene	-				
5.00 styrene 5.00 total xylen	→ <				
	MIVULATILES				
DILU	TION FACTUR:	80.0	83.0	0.0	
		05.5	0500	2525	
ET, LIMIT S. RQL (e≐IDL)	AMPLE NUMBER: UNITS:	CEN84 ug/kg	CEN88 ug/kg	CEN85 n/a	
10.00 4-methylphe		bg/kg	<u>ug/kg</u>		
10.00 naphthálene					
10.00 2-methylnap					
10.00 acenaphthen					
10.00 dibenzofura 10.00 fluorene	1		110.00 J		
10.00 fluorene		390.00 J	660.00 J		
10.00 anthracene		330,000	200.00 J		
10.00 di-n-butyl	onthalate				
10,00 fluoranthen	9	950,00 J	810,00 J		
10.00 pyrene		1100,00	560.00 J		
_10.00_benzo(a)ant 10.00_bis(2-ethy1		ie <u>580.00</u> j	250.00 J 160.00 B		
10.00 prs(2 ethy)	sexy+) portoaras	650,00 J	100.00		
10.00 di-n-octyl	ulithalate				
10.00 benzo(b)flu	pranthene	890.00			
10.00 benzo(k)tłu		480.00 J			
<u> 10.00 benzo(a)pyr</u>		<u>-610.00</u> .1			<u>-</u>
10.00 indens(1,2,		240.00 J			
		$4\underline{v}$			
10.00 arbenz(a.h)	11 51 X 15 5 1	. * # 17 - 12 - 2 - 2 - 2 - 2			
So page pengangangan	All Clints				
The opening of a state of the opening of the openin	STICIONS II GORACTOR	5 ~1 · · · ·	400.0	0.0	
Trade DATA: Pt. (14.0)	STICIONS		400.0 CEN88	0.0 CEN85	
The operation of the second se	STIVITATO FIGURACIA		CEN88	CEN85	

we result reported from remanalysis

SITE NAME: St. Elizabeth s Hospital SAMPLING DATE(s): 06-27-90 STATE/COUNTY CODE: 0011
TDD NUMBER: F3-9005-31 CASE NUMBER: 14399 EPA NUMBER: DC14

EAB NAMES: Organic-Clayton Novi Inorganic-Rocky Mountain Analytical

SAMPLE NUMBER: CEN84 CEN88 CEN85 SAMPLE ID: 5d · 2 Tripblk S-back LOCALION: backgrd. sediment Trip blank blank for surface same foc5w 2 rest.access openacc.ofts solids brw,silt,cly red, sandy PH: 6.3 6.2 FIELD MEASUREMENTS: none > bkg none≥ükg nane bkg PERCENT SOLIDS: 44.0% B. U%

TYPE OF DATA: PESTICIDES
DICUTION FACTOR: 390.0 400.0

DET. LIMIT SAMPLE NOMBER: CEN84 CEN88 CEN85 CRUL (@=IDL) UNITS; ug/kg ug/kg n/a

0.10 4,4'-DDT

Comments:

we result reported from re-analysis

SITE NAME: St. Elizabeth's Hospital SAMPLING DATE(s): 06-27-90 STATE/COUNTY CODE: 0011
TDD NUMBER: F3-9005-31 CASE NUMBER:14399 EPA NUMBER: DC14

LAB NAMES: Organic-Clayton Novi Inonganic-Rocky Mountain Analytical

	SAMPLE NUMBER:	MCDT88	MCDT89	MCDT91	MCDT92	MCDX29	MCDX30	
	SAMPLE ID:	S w = 1	Sw-2	5. − w ≥	Aq∽blank	S-1	2-5	
	LOCATION:	drain.strm	drain.stream	duplicate of	aqueous	on-site surf	onsite surf.	
		upstream	αwnstr,offst	Sw-2	blank	rest. access	rest. access	
		rest. access	open access			sandy loam	dark brown	
		clr,no odor	oily,foamy			ltbrw.no odr	much debris	
	PH:	6.0	5.6	5.6	3 .7	7.0	7.5	
	J MEASUREMENTS:	225 umhos/cm	5220umhos/cm	522Uumhos/cm	1 umbo/∟m	none≥bkg	none≥bkg	
1	PERCENT SOLIDS:					91.8%	84.8%	
TYPE OF DATA:	INORGANICS							
DILUTIO	ON FACTOR: : GFAA	1.000	1.000	1,000	1,000	0.218	0.236	
	: 1CP	1.000	1,000	1.000	1,000	0.218	0.236	
	: 11១	1.000	1.000	1.000	1.000	0.545	0.590	
	: ĈÑ	1.000	1.000	1.000	1.000	0.055	0.059	
DET. LIM i t	SAMPLE NUMBER:	MCDT88	MCDT89	MCDT91	MCDT92	MCDX29	MCDX3D	
CROL (@=IDL)	UNITS:	ug/l	ug/1	սց/ 1	ug / 1	mg∕kg	ing/kg	
uminom عاد 25.00		58.40	104000.00	92800.00		8070.00	21900.00	
24.00 antimony						5.30 L	17.90 L	, <u>.</u>
1.00 arsenic				2.30 L		2.40 J	4.60 J	
2.00 barium		46.20	1270.00	1040.00		115.00	501.00	
1.00 beryllium			93.10	_ <u>65.</u> 90		0.45 J	0.44 J	
5,00 cadmium						3.30	6.70	
66.00 calcium		39300.00	139000.00	1 25000 . 00	86.30	27500.00 J	37 6 00,00 J	
<u>5.00 chramium</u>			271.00	270.00		23.80	75.20	
6.00 cobalt			797.00	584.00		5.60	10.10	
4.00 copper		10.80 B	876.00	659.00		101.00 J	439.00 J	
22.00 iron		469.00	442000.00	420000.00	92.00	15200. <u>00</u> J	59700.00 J	
2.00 lead (ana	1. by GFAA)	3.60				-	-	
22.00 lead (ana	l, by ICP)		1360.00	935.00		296.00 J	2000.00 J	
76.00 magnesium		7650.00	62800.00	59100.00		4740.00 J	4510.00 J	
8.00 manyanese		178.00	8950.00	6940.00		611.00	1010.00	
0.20 метситу			0.50 J	0.80 J		0.39	0.61	
10.00 nickel			297.00	237.00		33.00 L	74.10 L	
115.00 potassium		3090.00	62600.00	55400.00		840.00	1290.00	
2.00 Selenium			27.00 J	27.00 J				
6.00 silver						1.90	9.30	
1100.00 sodium		8220.00	1260000.00	1200000.00		956.00	1750.00	
4,00 vanadium			871.00	853.00		21,90 J	55.30 J	
1.00 zinc		24.80 B	4770.00	3360.00	9.80	560.00 J	1750.00 J	
10.00 cyanide				12.30				

w= result reported from re-analysis

Comments:

SITE NAME: St. Elizabeth's Hospital SAMPLING DATE(s): 06-27-90 STATE/COUNTY CODE: 0011
TDD NUMBER: F3-9005-31 CASE NUMBER:14399 EPA NUMBER: DC14

LAB NAMES: Organic-Clayton Novi Inorganic-Rocky Mountain Analytical

SAMPLE NUMBER:	MCDX31	MCDX33	MCDx34	MCDT85	MCDT86	MCDX32
SAMPLE ID:	5-3	S ·· 5	\$ -6	S-7	8-8	Sd - 1
LOCATION:	offsite surf	ons,rest.acc	Duplicate of	ons,rest.acc	ons,rest.acc	same locat.
	composite	20″sabsoil	S - 5	18" subsoil	12"sub soil	ās Sw-1
	medbrw rocky	dnk.brw.clay		dek bewn	drk brwn	light brown
	open access	oily smell		rocky,sandy	rocky,sandy	claylike
PH:	ნ.5	7.1	7.0	7.3	7.4	5.7
FIELD MEASUREMENTS:	none rokg	hone-bkg	none roky	nonezbkg	none≥bkg	nonezbky
PERCENT SOLIDS:	91.7%	84.0%	90.9%	84.5%	89.2%	80.6%
TYPE OF DATA: INORGANICS						
DILUTION FACTOR: : GFA	A 0,218	0.238	0.220	0.237	0.224	0.248
: ICP	0.218	0.238	0.220	0.237	0.224	0.248
; Hg	0,545	0.595	0.550	0.591	0.561	0.620
: CN	0.055	0.060	0.055	0.059	0.056	0.062
DET. LIMIT SAMPLE NUMBER:	MCDX31	MCDX33	MCDX34	MCDT85	мсотвь	MCDX32
CRQL (@=IDL) UNITS:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg_	mg/ky
25.00 aluminum	5210.00	6850.00	5700.00	16700.00	7480.00	7750.00
24.00 antimony			6.50 L	9,80 L		
1.00 acsenic	1.90 J		0.62 J	4.40 J	2.80 J	2.20 J
2.00 barion	46.20	19.60	26.80	161.00	104.00	82.20
1.00 berylliam		0.63 J				0.53 J
5.00 cadmium	1.20			7.20	2.10	
66.00 calcium	9030.00 J	1630.00 J	17100.00 J	23700.00 J	26000.00 J	2980.00 J
5,00 chromiam	18.20	26.40	17.50	35.80	28.90	14.70
6.00 cobalt	6.40	3.50	4.70	10.30	6.70	9.80
4,00 copper	28.80 J	23.90 J	74.10 J	985,00 J	79.80 J	211.00 J
22,00 iron	21100.00 J	41100.00 J	16900.00 J	25100.00 J	19000.00 J	18000.00 J
2,00 lead (anal. by GFAA)		6.40 J				
22,00 lead (anal, by ICP)	83.80 J	J	614.00 J	427 ÛU J	376.00 J	58.10 J
76.00 magnesium	2610.00 J	510.00 J	3910.00 J	4030.00 J	11500.00 J	1460.00 J
8.00 manganese	174.00	83.50	105.00	320.00	222.00	235.00
0,20 mercury				0.36	0.28	
10.00 nickel	30.50 L	5,80 L	33.60 L	74,00 L	53.90 L	12.40 L
115,00 potassium	615.00	399.00 B	417.00 B	1200.00	623.00	755.00
2.00 selenium						
6.00 silver				2.60	1.40	
1100.00 sodium				2940.00	2670.00	
4.00 vanadium	36.50 J	102.00 J	54.30 J	28.00 J	29.80 J	28.70 J
1.00 zinc	104:00 J	51.40 J	450.00 J	1080.00 J	350.00 J	86.50 J
10.00 cyanide						
70.00 Cyantae						

Comments:

e= result reported from remanalysis

SITE NAME: St. Elizabeth's Hospital SAMPLING DATE(s): 06-27-90 STATE/COUNTY CODE: 0011
TDD NOMBER: F3-9005-31 CASE NUMBER:14399 EPA NUMBER: DC14

LAB NAMES: Organic-Clayton Novi Inorganic-Rocky Mountain Analytical

	SAMPLE NUMBER:	MCDT90	MCDT87	
	SAMPLE ID:	Sd-2	S-back	
	LOCATION:	sediment	backgrd.	
		same loc5w-2	surface	
		upenacc,offs	rest.access	
		red, sändy	orw,silt,∈ly	
	PH:	6.2	6.3	
FI	TELD MEASUREMENTS:	none > bkg	nonezhko	
	PERCENT SOLIDS:	76.6%	83.1%	
TYPE OF DATA:	INORGANICS	_		
DILU	JTION FACTOR: : GFAA		0.241	
	: ICP	0.261	0.241	
	: Hg	0.653	0.602	
	: CN	0.065	0.060	
DET. LIMIT	SAMPLE NUMBER:	MCDT90	MCDT87	
JRQL_(ë≃IDL)	UNITS:	mg/kg	mg/kg	
25.00 aluminu		2220.00	9010.00	
<u>24.00 antimur</u>	<u>1Y</u>			
1.00 arsenio		0.73 J	5.10 J	
2.00 barium		14.20	67.00	
<u>1.00 berylli</u>		0.67 J		
5.00 cadmium				
66,00 calcium		501.00 J	4310.00 J	
. <u>5.00chrowic</u>	<u>idl</u>	12.00	18.60	
6.00 cobalt		11.90	5.30	
4.00 copper		17.70 J	46.10 J	
<u>22.00 iron</u>		14800.00 J	15700.00 J	
	anal. by GFAA)	22.30 J	201 00	
	anal, by ICP)	224 23	291.00 J	
76.00 magnesi		224.00 J	1640.00 J	
8,00 mangane		143.00	182.00	
0.20 mercury	<i>'</i>	4 0.1	0.24	
10.00 nickel		4.00 L	14,10 L	
115.00 potassi		390.00 B	877.00	
2,00 seleniu	1411			
6.00 silver				
1100.00 sodium 4.00 vanadiu		32.50 J	34.60 J	
4.00 vanadiu 1.00 zinc	4111	32.50 J 40:10 J	34.60 J 118.00 J	
10,00 zinc 10,00 cyanide		- +U.IU J	118.00 J	
Commondania	=			

Comments:

w= result reported from re-analysis

TDD No.: <u>F3-9005-31</u>

7.2 Quality Assurance Review

7.2.1 Organic Data: Lab Case 14399

7.2.1.1 <u>Summary</u>

One aqueous sample and 10 solid samples were analyzed for volatile, acid, base-neutral, and pesticide/polychlorinated biphenyl (PCB) compounds through the EPA Contract Laboratory Program (CLP). Four aqueous samples (one trip blank and three surface water samples) were analyzed only for volatile organic compounds. Included in the sample set were two field duplicate pairs and one field blank.

The data have been fully reviewed to determine the usability of results according to the National and Regional guidelines. (Areas examined in detail are listed in the Support Documentation appendix.) Data quality was acceptable for most compounds with detection limit capability demonstrated by meeting criteria for holding times, surrogate and matrix spike recoveries, and instrument tuning and calibration. Blank contamination affected low levels of common volatile compounds and three phthalate compounds. There were a few noteworths quality control problems.

Principal areas of concern include blank contamination, a few slightly high volatile surrogate recoveries, several low semivolatile internal standard areas, and a few low semivolatile surrogate and matrix spike recoveries. Several re-analyses were evaluated by the reviewer.

7.2.1.2 Qualifiers

 Samples CEN76 through CEN78 were re-analyzed for volatile compounds because the toluene surrogate recoveries were slightly above quality control (QC) limits. The re-analyses exhibited similar surrogate recoveries. The following table indicates which results have been reported for each sample and the criterion used for each decision.

TDD No.: F3-9005-3

Sample Number	Analysis Reported	Compounds	Result Reported	Decision Criterion
CEN76	initial	methylene chloride	36 ug/kg	7
	re-analysis	acetone	not detected	2
	initial	carbon disulfide	85 ug/kg	4
	initial	toluene	19 ug/kg	3
	re-analysis	styrene	not detected	2
CEN77	re-analysis	methylene chloride	380 ug/kg	3
	re-analysis	acetone	110 ug/kg	1
	re-analysis	carbon disulfide	280 ug/kg	8
	initial	trichloroethen	3 ug/kg	5
	re-analysis	tetrachloroethene	52 ug/kg	4
	initial	tolugne	70 ug/kg	3
	initial	ethyl benzene	3 ug/kg	5
i	initial	styrene	12 ug/kg	7
	initial	(xylenes)	17 ug/kg	4
CEN78	re-analysis	methylene chloride	48 ug/kg	6
	initial	acetone	not detected	2
	re-analysis	carbon disulfide	12 ug/kg	4
-	re-analysis	toluene	4 ug/kg	9

Decision Criteria

- 1. Both results were questioned by the blanks; the lowest result has been reported.
- 2. This compound was detected in only one analysis and that result was questioned by the blanks.

 The "not detected" result was reported.
- 3. Both results for this compound were too high to be questioned by the blanks. Therefore, the highest result was reported.

TDD No.: F3-9005-3

4. This compound was detected in both analyses and was not detected in any blanks. The highest result has been reported.

- 5. This compound was detected in only one analysis and was not detected in any blanks. Therefore, the positive result has been reported.
- 6. One result for this compound was questioned by the blanks, but the second result was above the range considered attributable to blank contamination. Therefore, the highest result has been reported.
- 7. The results for this compound were the same in both analyses. Since the quality control data were very similar, the result from the initial analysis has been reported.
- 8. One result exceeded the calibration range of the instrument, and the second result was within the calibration range. The result within the calibration range has been reported.
- 9. This compound was detected in only one analysis at a level too high to be questioned by the blanks. Therefore, this positive result has been reported.
 - All results for methylene chloride (except in samples CEN85, CEN77, and CEN78), acetone, styrene, di-n-butyl phthalate, di-n-octyl phthalate, and bis(2-ethylhexyl) phthalate have been flagged as undetested due to blank contamination (B). The results for these laboratory contaminants were not significantly higher in the samples than in all associated blanks.
 - The result reported for methylene chloride in sample CEN77 has been flagged as unreliable (R). The instrument level results in both analyses for this sample were above the range considered attributable to blank contamination. However, the result in the re-analysis (performed with a two-fold dilution) was more than five times higher than the initial result. (The instrument level for the re-analysis was three times higher than the initial analysis.) This high variability in results, coupled with the prevalence of this compound as a laboratory contaminant, suggests that it is not possible to determine if methylene chloride is actually indigenous to this sample location. Further information may be useful in verifying methylene chloride is present at this sampling location.

TDD No.: <u>F3-9005-31</u>

• The result for methylene chloride in sample CEN78 has been flagged as unreliable (R). The instrument level of the reported result is only slightly higher than the range considered attributable to blank contamination.

- All volatile results in samples CEN76, CEN77, CEN78, and CEN82 are considered estimated because of the slightly high surrogate recoveries. These results have been flagged as estimated (J), unless previously flagged.
- Even though flagged (B), the result for styrene may be real in sample CEN77. The presence of other alkyl benzenes in this sample may corroborate the presence of this compound. Further information may be useful in determining if this compound is actually present in this sample.
- The laboratory re-analyzed the semivolatile fraction of solid samples CEN78 through CEN81. The areas for the fifth internal standard (4.2-chrysene) were contractually low in samples CEN78, CEN80, and CEN81. The areas for the sixth internal standard (d₁₂-perylene) were contractually low in all four samples. These areas were similarly low in the re-analyses. Because the quality control data are similar in both analyses of each sample, the reviewer has reported the highest results for each compound, with the exception of di-n-butyl phthalate, bis(2-ethylhexyl) phthalate, and di-n-ectyl phthalate. (All results for these laboratory contaminants were questioned by the blanks.) The Support Documentation appendix contains a summary of which results were reported for each affected sample.
- The detection limits for undetected polynuclear aromatic hydrocarbons (PAHs) and the positive results for detected PAHs eluting after fluorene may be higher than reported and are flagged (L) in sample CEN78. The areas for the perylene internal standard were quite low for both analyses of this sample. The areas for this internal standard were quite low for both analyses of sample CEN80 as well. Detection limits for late-eluting PAHs (eluting after fluorene) may be biased low in this sample as well.
- The internal standard areas were quite low for both chrysene and perylene for both analyses
 of sample CEN81. Consequently, detection limits for all PAHs may be higher than reported in
 this sample.

TDD No.: <u>F3-9005-31</u>

• The detection limits for phenol may be higher than reported in sample CEN90. The recovery for the phenol surrogate was low in this sample.

- A slightly low recovery was noted for 4-nitrophenol in the medium-level matrix spike analysis of solid sample CEN83. The detection limit for this compound may be slightly higher than reported in this sample.
- A comparison of the initial and matrix spike/ matrix spike duplicate (MS/MSD) analyses of sample CEN82 indicated the possibility of sample inhomogeneity for this sample. The results for phenanthrene, fluoranthene, benzo(a)anthracene, chrysene, and benzo(a)pyrene were substantially higher in the MSD analysis than in the initial and MS analyses. [The results for these compounds were all greater than the contract required detection limit (CRDL) for the MSD analysis.] The reviewer added benzo(k/fluoranthene, dibenzofuran, fluorene, and dibenz(a,h)anthracene to the data summary for this sample; these compounds were detected only in the MSD analysis. [The result for benzo(k)fluoranthene should also be considered estimated because the level in the MSD way substantially greater than the CRDL.] These results have been flagged as tentatively identified because no sample spectra were provided for the MS/MSD analyses. The results for phenanthrene, fluoranthene, benz(a)anthracene, chrysene, benzo(a)pyrene, and benzo(t) fluoranthene may be considered estimated in all solid samples because of the possibility of sample inhomogeneity. These results have been flagged (J), unless previously flagged (L) or (N).
- The result for 4,4'-QDT has been flagged as unreliable (R) in sample CEN76. There is no evidence of either DDD or DDE in this sample; without the corroborating presence of these degradation products of DDT, this result should not be considered confident without further information.
- Sample results that are below the calibration range of the instrument have been flagged as estimated (J), where no other flag exists.
- Tentatively identified compounds that are not considered to be laboratory artifacts are summarized immediately following this report.

TDD No.: F3-9005-31

7.2.1.3 Support Data

The Support Documentation appendix to this report documents the above findings associated with blank contamination, low semivolatile surrogate and matrix spike recoveries, low internal standard areas, slightly high toluene surrogate recoveries, the addition of four semivolatile results to the data summary, and information regarding the evaluation of multiple results for several samples. (Issues pertaining to laboratory contractual compliance are found on a separate summary directed to the laboratory technical project officer.)

Report prepared by Roy Cohen (215) 687-9510

Report reviewed by Russell Sloboda (215) 687-9510

SAMPLE DATA SUMMARY: ORGANIC TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE	ANALYSIS	ESTIMATE	D	QUALIFI	ER COMPOUND NAME
NUMBER	FRACTION	CONCENTRAT		CODE	10+21
ال	(VOA/BNA)	VALUE	צדואט		1012
Ca. 71	VOA			- /	ND
Cen 76		150	VG/L .		
	BNA	650	V9/Kq		molecular sulfue
0 1/0	a (A) A				
CENT	1	2.7	a		ND
<u></u>	BNA	370	Ug Kg		molecular sulfur
	1 4		0		
CENTR			<u> </u>		NO
	RNA	1300	19/kg	107/150	puss. ben to (bloach thothisphere
		540		mk !	poss. ben to (b) nach thothisphere
<u></u>		980	1		satd HC
CeN79	1VOA				\mathcal{M}
	BNA	1800	19/19	TOTUMA	unknowns (2)
CENSO	NOA			i	MD
× (-(-)	BNA	8000	vy ka	TOT	Sate H(8)
			7		
CEN 81	VOA	1			ND
7714 -	IBNA	6200	ugla	TOT	Satd HC (6)
_	1	DACU	73	101	
CENRO	JAA	 			1/1
7-11/2	BNA	5800	v9 h.	TOT	molecular sulfer (2)
 	<u> </u>	7		101.	unsald HC of unkn subst-+ Sulfur
	 - - - - - - - - -	770	╏	707 1	
 	-	2600		101	tellerpane HC(3)
 1	<u> </u>	1200	1		sate HC
	1	 			· · · · · · · · · · · · · · · · · · ·
		<u> </u>			
	1		 		
			1		-

DEFINITIONS OF QUALIFIER CODES:

- SUS = SUSPECTED FALSE POSITIVE RESULT: Compound is either a common laboratory contaminant, or else a possible reaction byproduct (artifact) attributable to the chemical reagents used for sample preparation and analysis. This result is suspect even though this compound was not found in any associated blanks.
- UNK = UNKNOWN COMPOUND: Library search result unreasonable or of very low matching quality.
- TOT = TOTAL CONCENTRATION REPORTED: Represents the sum of several compounds detected all belonging to the same chemical class.
- ISO = OR ISOMER: Compound identification is not selective for this isomer only. This result may instead represent the presence of a similar compound comprised of the same atoms bonded together in a different arrangement or substitution pattern.

SAT HC = SATURATED HYDROCARBON

UNSAT HC = UNSATURATED HYDROCABON

HC = HYDROCARBON

PAH - progradieur aromatic hydrocarbon

SUB = SUBSTITUTED

MIX = MIXTURE OF 2 OR MORE COELUTANTS

ND - NONE DETECTED

SAMPLE DATA SUMMARY: ORGANIC TENTATIVELY IDENTIFIED COMPOUNDS

	ANALYSIS	ESTIMATE		QUALIF	
1	FRACTION (VOA/BNA)		אסד צדואט	CODE	1 11 2 1 9 1
<u> </u>	<u> </u>				/
CRNB?	5 VOA	78	Wag	ISO	Course such as camphene
-	+	<u> </u>		Pol Unk	Consard HC & unknown subst (2)
	+ + -	12			Saltiz-C3-alky/honzone tunk
	CALA	10		Unk	unkunsated HC+ poss subst-bernene
	BNA	22,000	<u> </u>		sulfur
100 A 100	1 12 1	<u> </u>	1/9li_	11010	and the contract of
CENSA	<u> </u>	57	2 1)K	UNK	
 - - - - - - - - - 		43	- -	150 100	Carolley la camphone
	BNA	3500		150	Caralky hensene (Ca Hiz)
-	DIVA			₩,¥	anknown (amount HCs
-		650		TOT	Said HC (3)
		4500	J	70	unsated HC of unknown Subst (2)
	1 -	7300	\V	المديت	J. 150 11 01 01 10 34 03 (2)
CENEU	- V/)A				NO
2000	1 701)				
CENIR	7 VOA				NO
CeN88	PIVIA	50	ully	150	CaH12- Czalky/ benzene
	BNA		7		ND
Censa	VOA				NO
	1				
	1				
					- -

DEFINITIONS OF QUALIFIER CODES:

- SUS = SUSPECTED FALSE POSITIVE RESULT: Compound is either a common laboratory contaminant, or else a possible reaction byproduct (artifact) attributable to the chemical reagents used for sample preparation and analysis. This result is suspect even though this compound was not found in any associated blanks.
- UNK = UNKNOWN COMPOUND: Library search result unreasonable or of very low matching quality.
- TOT = TOTAL CONCENTRATION REPORTED: Represents the sum of several compounds detected all belonging to the same chemical class.
- ISO = OR ISOMER Compound identification is not selective for this isomer only. This result may instead represent the presence of a similar compound comprised of the same atoms bonded together in a different arrangement or substitution pattern.

SAT HC = SATURATED HYDROCARBON

UNSAT HC = UNSATURATED HYDROCABON

HC = HYDROCARBON

PAH - pay nucleur arcmatic hydrocartical

SUB = SUBSTITUTED

MIX = MIXTURE OF 2 OR MORE COELUTANTS

ND - NONE DETECTED

TDD No.: <u>F3-9005-31</u>

7.2.2 Inorganic Data: Lab Case 14399

7.2.2.1 <u>Summary</u>

Ten solid samples and 4 unfiltered aqueous samples were analyzed for total metals and cyanide through the EPA CLP under case 14399. Included in the sample set were one unfiltered aqueous duplicate pair, one solid duplicate pair, and one field blank. The laboratory divided the samples into two sample delivery groups (SDGs). With the exception of blank contamination, no quality control data have been cross-applied between SDGs.

The data have been fully reviewed to determine the usability of results according to the National and Regional guidelines. (Areas examined in detail are listed in the Support Documentation appendix.) Data quality was good for most metals and for cyanide. Detection limit capability was demonstrated for most analytes by meeting criteria for holding times, spike recoveries, calibration check standards, low-level standards, and linear range analyses. Several quality control problems affected a large number of results, however.

Areas of concern include blank contamination, boratory duplicate imprecision, matrix spikes that were out of control limits, low post-digection spike recoveries, serial dilution imprecision, and several results changed on the data summary because or laboratory rounding as well as a calculation error. One result was added to the data summary.

7.2.2.2 Qualifiers

- Several metals were detected in the laboratory and field blanks associated with this case.
 However, only five results have been flagged (B), undetected, due to blank contamination.
 These results include the following: copper in sample MCDT88; potassium in samples MCDT90, MCDX33, and MCDX34; and zinc in sample MCDT88.
- Low matrix spike recoveries were obtained for antimony for aqueous sample MCDT89 and solid sample MCDT85. In both cases, the post-digestion spike recoveries were acceptable, suggesting that this analyte was lost upon sample digestion. Consequently, positive results for antimony have been flagged biased low (L) in samples MCDX34, MCDT85, MCDX29, and MCDX30. The detection limits for this metal may be higher than reported in all other samples.

TDD No.: <u>F3-9005-3</u>

A low matrix spike recovery for arsenic was noted for aqueous sample MCDT89. The post-digestion spike recovery was good, indicating loss of this analyte upon digestion. Therefore, the positive results in sample MCDT91 may be higher than reported and have been flagged (L). The detection limits for arsenic may be higher than reported in samples MCDT88 and MCDT89 (similar monitoring well samples).

- The reviewer added 27 ug/l for selenium to the data summary for aqueous sample MCDT89. The initial analysis for this sample and the laboratory duplicate of this sample indicated that selenium was present at this sampling location at a level that exceeded the CRDL. However, because of unusual matrix and post-digestion spike behavior, the sample and the duplicate were re-analyzed at a 10-fold dilution. The post-digestion spike recoveries were better for the sample and the laboratory duplicate. The same series of analyses were performed on the field duplicate sample, MCDT91, with comparable results. Consequently, selenium has been reported for sample MCDT89 and flagged (J), estimated. The result for sample MCDT91 is also considered estimated, because the matrix spike effect is not conclusive regarding direction of bias. Although these results may be higher, than reported, further information would be necessary in determining the accurate ("true") selenium level at this sampling location (SW-2). Moderate levels of many other initials (0.1/to 1.2 mg/l) and the oily, foamy matrix may be a cause for the analytical problems encountered in these two samples.
- The detection limits for selemium may be higher than reported by the laboratory in samples MCDT85 and MCDX34. The matrix spike and post-digestion spike recoveries were low in solid sample MCDT85, suggesting a sample-specific matrix effect. The post-digestion spike recovery was also low in sample MCDX34, although not low enough to require dilution and re-analysis.
- Unusual matrix spike recoveries were noted for copper and lead in solid sample MCDT85. The spiked sample result was lower than the initial, unspiked result for copper, and the spiked sample result was higher than would be expected for lead. These data suggest a substantial degree of sample inhomogeneity for both metals, which is corroborated by laboratory duplicate imprecision for copper in sample MCDT85. Consequently, all solid results for these two metals have been flagged as estimated (J).

TDD No.: <u>F3-9005-31</u>

 Significant disagreement between plasma and furnace lead values were seen for samples MCDT86, MCDX30, MCDX33, and MCDX34, further supporting the contention that these lead results should be considered imprecise due to inhomogeneity. Further information or analyses may be useful in determining which results best represent the indigenous levels at these sampling locations.

- Laboratory duplicate imprecision for sample MCDT85 was observed for zinc; all solid results for this metal have been flagged as estimated (J).
- The matrix spike recovery for nickel was 57 percent in solid sample MCDT85. The post-digestion spike recovery was 68 percent, suggesting primarily that a sample-specific matrix effect occurred that suppressed the detection of nickel in this sample. Because no other post-digestion spike analyses were performed, the results for nickel in all solid samples may also be similarly affected and have been flagged (L), biaset low.
- Field duplicate imprecision was displayed for arsenic, beryllium, lead, copper, iron, calcium, magnesium, nickel, vanadium, and zinc between solid samples MCDX33 and MCDX34. All solid results for these metals have been flagged as estimated (J), except where previously flagged. Sample inhomogeneity is most likely the cause for this observed imprecision (further supporting the conclusion already drawn for lead and copper).
- Field duplicate imprecision was observed for mercury between aqueous samples MCDT89 and MCDT91. These results have been flagged as estimated (J).
- The reviewer changed the mercury results in samples MCDT86, MCDX29, and MCDX30. The laboratory rounded off the initial results for samples MCDT86 and MCDX29, resulting in final results that were substantially different than those calculated by the reviewer, using one more significant figure. The result for sample MCDX30 was miscalculated by the laboratory.
- All lead results were reported from the plasma analysis except for the results in aqueous sample MCDT88 and solid samples MCDT90 and MCDX33. With the exceptions already discussed, fairly good agreement exists between the two methods for all solid samples and aqueous samples MCDT89 and MCDT91.

TDD No.: F3-9005-31

7.2.2.3 Support Data

The Support Documentation appendix to this report documents the above findings associated with blank contamination, outlying matrix and post-digestion spike recoveries for several metals, laboratory duplicate imprecision, results changed or added to the data summary, and serial dilution imprecision. This report has been formatted to address those issues directly affecting the application of the data to the subject investigation. (Issues pertaining to laboratory contractual compliance are addressed on a separate form directed to the laboratory technical project officer.)

Report prepared by Roy Cohen (215) 687-9510

Report reviewed by Russell Sloboda (215) 687-9510

SECTION 8

TDD No.: F3-9005-31

8.0 TOXICOLOGICAL EVALUATION

8.1 Summary

Surface and subsurface soil and sediment samples revealed trace to low levels of volatile organic contaminants (VOCs), higher concentrations of a number of semivolatile contaminants (SVOCs) including polynuclear aromatic hydrocarbons (PAHs), and notable levels of five metals including lead. Under conditions of exposure expected for this site, predicted intakes for VOCs, SVOCs, and metals are below reference doses (RfDs) or other lowest observed adverse effect levels (LOAELs) where such criteria or levels exist. Inhalation and dermal exposures to reported contaminant levels are also not expected to result in significant contaminant exposures. Increased risks of cancer due to the presence of traces of trichloroethene (TCE) and tetrachloroethene (PCE) in surface soil cannot be ruled out but are expected to be well below 10-6.

In the case of PAHs and lead for which no RfDs have been developed, predicted exposures for these common urban contaminants may not significantly exceed those normally encountered by urban dwellers or workers. It is desirable to reduce avoidable exposure to lead wherever possible, however. Several PAHs and lead are also classified as BX probable human carcinogens, and any exposure (even typical urban exposure) may result in an increase crisk of cancer.

Aqueous samples from a site-coursing drainage stream revealed a trace of chloroform and several metals in excess of criteria protective of aquatic life. The presence of suspended particulates that may artificially elevate metal concentrations cannot be ruled out. This stream is not expected to support aquatic life, and dilution downstream of the site may reduce contaminant concentrations. A downstream drainage stream sediment sample revealed no significant contaminant levels.

8.2 Support Documentation

8.2.1 Organic Contaminants

Analysis of surface and subsurface samples from various locations on the St. Elizabeth's Hospital property revealed trace to low levels of VOCs such as carbon disulfide (up to 280 ug/kg), 2-butanone (20 ug/kg), TCE (3ug/kg), PCE (up to 93 ug/kg), toluene (up to 70 ug/kg), ethylbenzene (3 ug/kg), and xylene (up to 17 ug/kg). Reported SVOCs included 4-methylphenol (510 ug/kg) and various PAHs (up to 10,206 ug/kg). The highest levels of these contaminants, with the exception of PAHs and PCE, were measured in sample 5-2, obtained from the dry drainage ditch in the center of the site.

TDD No.: F3-9005-31

Although the property is fenced, access by persons living in proximity to the site is apparently not reliably restricted (see site observations). Similarly, patients and workers associated with the hospital may be considered at risk of exposure to contaminants reported in surface media. Exposure routes of concern may include inhalation of windborne particulates, inadvertent ingestion of soil on hands, etc., and dermal absorption following direct contact. No HNU readings above background were obtained on site, suggesting that no significant levels of organic vapors are present in ambient air. For this site, subsurface samples, which were obtained at depths of 12 inches or greater, are not considered available for direct contact or inhalation.

Dermal absorption of the reported contaminants from a soil matrix may not be a significant exposure route; dermal exposure is generally a concern of occupationally exposed workers who are exposed to high contaminant levels. Reported concentrations of VOCs and 4-methylphenol are relatively low and significant doses may not be dermally absorbed from soil under conditions of exposure expected for this site. In some cases (TCE and PCE, for example), dermal absorption during high-level industrial exposures is not considered significant. PAHs, reported at higher concentrations on site, strongly adsorb to soil matrices and may not cross the skin in significant quantities from this medium.

Inhalation of windborne particulates by persons on the site may occur but cannot be quantified with available information. The trace to low levels of VOEs and 4-methylpehnol reported on site, along with expected dilution by wind upon release of soil particulates to the air, suggest that inhalation exposure to these contaminants may not be significant. PAH levels, while higher, are reported in surface soils at levels equivalent to or lower than those measured in the background sample. PAHs are common soil contaminants, especially in urban areas, and no site-related increases over PAH levels encountered elsewhere in arrurban environment are indicated by these data.²

Inadvertent ingestion of soil on hands, etc. is also not expected to result in adverse effects due to to the reported levels of VOCs or 4-methylphenol on this site. If a conservative exposure scenario that assumes that 100 mg of soil containing the highest reported levels of VOCs and 4-methylphenol is accidentally consumed each day is applied, resultant contaminant doses would fall below RfDs for noncarcinogenic effects for carbon disulfide, 2-butanone, toluene, ethylbenzene, xylene, and 4-methylphenol.³ No RfDs have been developed for TCE and PCE due to their classification as Group B2 (probable) human carcinogens.³ Based on suggested acceptable intakes for noncarcinogenic endpoints of toxicity of 0.52 mg per day for TCE and 0.17 mg per day for PCE, no noncarcinogenic effects would be expected.⁴ Theoretical increases in cancer risk following exposure to the highest reported concentrations of TCE (3 ug/kg) and PCE (52 ug/kg) in surface soil would be less than 10-6 for TCE and PCE for both adults (70-kilogram reference weight) and children (10 kilogram reference weight).³

TDD No.: <u>F3-9005-31</u>

Inadvertent ingestion of 100 mg per day of surface soil containing the reported PAH concentrations would result in expected doses that fall below RfDs for individual PAH compounds, where such guidelines exist.³ No RfDs have been developed for PAHs that are classified as Group B2 probable human carcinogens such as pyrene, benz(a)anthracene, chrysene, benzo(b)- and benzo(k) fluoranthene, benzo(a) pyrene (BAP), indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene, which were reported on this site. Increased cancer risks following long-term exposure to levels of these PAHs reported in surface soil may be on the order of 2 X 10-5 for adults and 1 X 10-4 for children.⁵ It may be noted that this risk is derived using a relative potency approach based on BAP, which has been assigned its former potency of 11.5 (mg/kg/day)-1.⁵ Currently, no unit cancer risk is available for B2 PAHs; the old potency factor has been used to provide a rough estimate of risk in accordance with EPA Region III policy. Also, as formerly noted, on-site PAH levels are similar to those reported in the background sample and may not be unusual in an urban setting. Risks associated with exposure to PAHs in on-site soils may, therefore, be equivalent to those normally experienced by persons living or working in an urban setting.

Up- and downstream aqueous samples from an on-site drainage pathway revealed only chloroform at concentrations up to 0.8 ug/l in the downstream sample. Due to this contaminant's lack of persistence in surface media and its relative low toxicity to aquatic life (chronic lowest observed effect level of 1,240 ug/l), no adverse effects are expected.6

8.2.2 Inorganic Contaminants

Inorganic analysis of surface and subsurface soil samples revealed the presence of antimony (up to 17.9 mg/kg), cadmium (up to 7.2 mg/kg), copper (up to 985 mg/kg), lead (up to 2,000 mg/kg), and silver (up to 9.3 mg/kg) at levels exceeding upper range levels generally reported for nonpolluted United States soils.^{7,8} Elevated metal levels were generally distributed throughout the site, with samples S-2 (dry drainage ditch) and S-7 (subsurface sample from a former fill area) exhibiting notable concentrations of all five above-noted inorganics.

No adverse noncarcinogenic effects via likely exposure routes are expected from the concentrations of metals reported for this site. Dermal absorption of metals from a soil matrix is not usually significant, especially at the levels reported for this site. Inhalation of windborne particulates is a possible exposure route, although it is not quantifiable with available information. At the reported metals concentrations, dilution would be expected to play a significant role in attenuating possible airborne exposure to metal concentrations in surface soil. In addition, a significant portion of inhaled particulates are subsequently swallowed and will be considered below.

TDD No.: F3-9005-31

Assuming inadvertent ingestion of 100 mg per day of the highest reported metal concentrations, doses that fall below RfDs for antimony, cadmium, and silver would result.³ No RfD has been developed for copper or lead; in the case of copper, an acceptable intake of 2.6 mg per day can be predicted from the proposed Maximum Contaminant Level Goal (MCLG) of 1.3 mg/l in drinking water (based on a LOAEL of 5.3 mg).³ These levels suggest that an intake of 1.41 X 10-³ mg/kg (adults) and 9.87 X 10-³ mg/kg (children) predicted from the highest reported copper soil concentration would pose no threats for this essential nutrient.

No RfD is available for lead, a common constituent of urban soil, dust, and air. Soil lead and dust levels have been reported as ranging from 150 mg/kg to 300 mg/kg for urban soil and as high as 20,000 mg/kg for urban street dust.⁹ The occurrence of lead at up to 2,000 mg/kg in on-site soil is not surprising, considering the hospital's location and its use as a landfill for street sweepings and storm sewer cleanings.

Since lead is a common contaminant in the urban environment, urban dwellers and workers have unavoidable exposures to this heavy metal. Estimated baseline lead intakes have been reported at 88.2 ug per day for urban-dwelling adults and 137.6 ug per day for urban-dwelling children; additional sources of exposure may include urban gardens, houses with interior lead paint, and smoking.9 Inadvertent ingestion of 100 mg of the highest lead concentration in surface soil would result in an intake of 200 ug, a level that exceeds baseline intakes predicted for urban dwellers. Actual exposure may be less since other sair lead levels ranged from 296 mg/kg to 614 mg/kg on site; 291 mg/kg of lead was measured in the background soil sample. It is desirable, especially for individuals who are most susceptible (such as infants, children, and pregnant women), to reduce one's exposure to this metal wherever possible. Lead is also classified as a Group B2 (probable) human carcinogen and any exposure may result in an increased cancer risk; however, it is recommended that quantitative estimates of cancer risk not be calculated for lead due to the considerable uncertainty in the estimates. 10

TDD No.: <u>F3-9005-31</u>

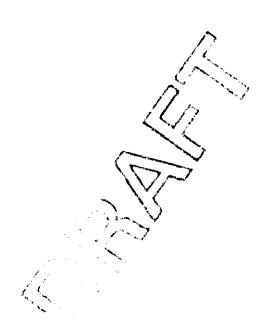
Aqueous samples from the drainage stream that crosses the site revealed levels of several inorganics in excess of upstream concentrations as well as criteria protective of aquatic life. These inorganics included (in ug/l) aluminum (up to 104,000), chromium (up to 271), copper (up to 876), iron (up to 442,000), lead (1,360), mercury (up to 0.80), zinc (up to 4,770) and cyanide (up to 4,770). Ambient Water Quality Criteria for these contaminants are (in ug/l) aluminum, 87, chromium (hexavalent), 11, copper 5.2, iron, 1,000, lead, 1.3, mercury, 0.012, zinc, 110, and cyanide, 5.2.6.11. This drainageway is not expected to support aquatic life and AWQCs are provided for comparison purposes. Also note that the drainage stream aqueous samples likely contained significant amounts of suspended particulates. These particulates may provide an adsorptive surface for metals and result in samples in which reported metal concentrations consist of metal-adsorbed particulates as well as dissolved metals. The outfall of this stream is not known; however, the nearest receiving water is one mile away, and dilution may reduce contaminant levels downstream of the site (see section 3.2). Also note that metals levels in sediment sampled at the downstream location were within ranges reported for nonpolluted United States soils.^{7,8}

Report prepared by

Elizabeth A. Quinn, Seniol Texicologist

TDD No.: F3-9005-31

LIST OF SOURCES


1. Clayton, G.D., and F.E. Clayton. 1981. Patty's Industrial Hygiene and Toxicology. Third Revised Edition, Volume 2B. John Wiley & Sons, New York.

- 2. Jones, K. C., et al. 1989. Organic contaminants in Welsh soils: Polynuclear aromatic hydrocarbons. Environ. Sci. Technol. 23, 540-550.
- 3. United States Environmental Protection Agency. 1989. Health Effects Assessment Summary Tables; Fourth Quarter FY89. Office of Emergency and Remedial Response, Washington, D.C.
- 4. Federal Register. 1984. National Primary Drinking Water Regulations; Volatile Synthetic Organic Chemicals; Proposed Rulemaking. Yolume 49, Number 114. June 12, 1984.
- 5. ICF-Clement Associates. 1988. Comparative potency approach for estimating the cancer risk associated with exposure to mixtures of polycyclic aromatic hydrocarbons. Interim Final Report. ICF-Clement Associates, Fairfal VA
- 6. United States Environmental Projection Agency. 1987. Update Number 2 to Quality Criteria for Water 1986. Office of Water Regulations and Standards, Criteria and Standards Division, Washington, D.C.
- Shacklette, H.T., and J.G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. United States Geological Survey Professional Paper 1270.
- 8 Dragun, J. 1988. The Soil Chemistry of Hazardous Materials. Hazardous Materials Control Research Institute, Silver Spring, MD.
- 9. United States Environmental Protection Agency. 1986. Air Quality Criteria for Lead. Environmental Criteria and Assessment Office, Research Triangle Park, North Carolina. EPA 600/8-83-028.

TDD No.: <u>F3-9005-31</u>

 Federal Register. 1988. Drinking Water Regulations; Maximum Contaminant Level Goals and National Primary Drinking Water Regulations for Lead and Copper; Proposed Rule. Volume 53, Number 160. August 18, 1988.

11. United States Environmental Protection Agency. 1988. Ambient Aquatic Life Water Quality Criteria for Aluminum. Office of Research and Development, Duluth, Minnesota. EPA 440/5-86-006.

APPENDIX A

.1200	7.1.		13 L	AB	DAT	A CA	CKE	.0_				
ASE/SAS NO .: 14399			^	PPLI	CABL	E SAM	PLE	NO's.:				
YPE OF ANALYSIS: 100 OTTA	MC			1 00	-	00						
	8			<u>~ 781</u>		- 10 .						<u>_</u>
EVIEWER: K. Conen												
EVIEW DATE : Jan 28,	1491						_					
			_					·				
HE FOLLOWING TABLE INDICATES	ſ		S EX					ARE		DOCU		OITAT
REAS WHICH WERE EXAMINED IN ETAIL, THE IDENTIFIED PROBLEM		-								ДΙ	IACH	MENTS
REAS, AND SUPPORT DOCUMENTAT TTACHMENTS:	1	OR FOO	CK(V) OTNOT OMMEN	E LET	TER	OR FO	OTNOT	IF YI E NUM ITS BE	IBER I	0	RIDE	IF YES
	ALL APPLICADO	VOA	NA NA	PEST	ALL APPLICE	ANAL YSES VOA	BNA	PEST/PC	ALL APPLIE	ANALYSES VOA	Z BNA	PEST/PCB
HOLDING TIMES										_		
BLANK ANALYSIS RESULTS, TARGET COMPOUNDS		 	 			 			12			
BLANK ANALYSIS RESULTS: TENTATIVE I.D.s	/	<u> </u>	1			†						
SURROGATE SPIKE RESULTS		<u> </u>			\Box	†			V	† —		
MATRIX SPIKE RESULTS	1								V			
DUPLICATE ANALYSIS RESULTS	/											
ARGET COMPOUND MATCHING QUALITY	1					Ī						
TENTATIVELY IDENTIFIED COMPOUNDS	/											
OFTPP & BFB SPECTRUM TUNE RESULTS	V		<u> </u>							<u> </u>		
SC INSTRUMENT PERFORMANCE	_/	<u> </u>	 			ļ				ļ		
INITIAL CALIBRATIONS	1		 	 	<u> </u>	<u> </u>				ļ		
	1	4	 	 	 - -	1				 		
	 	/ 	 			-	·			 		
CONTINUING CALIBRATIONS QUANTITATION OF RESULTS OTHERS		\										

	BLANK AN	ALY 313	KESU	<u> </u>	S FUR TARGET CUMPUUNUS
FRACTION	TYPE CONC MATRIX	SAMPLE #	SOURCE OF	H ₂ 0	CONTAMINANTS (CONCENTRATION / DETECTION LIMIT)
,		1001.0		5.5	med2 1.5 ug/e
LVOA	99 lat bet	VBLKA	lab		autone (while by
V () / /	99 lat ber	7/2	/00	17.4	2 horanone 1.9 4918 .
	, 0		····	15.4	
MA	low ard	DIA SLAC		\$`\$	· medz 3.5 mg/l 0
MA		UBIKAE	lab		
	lati lek	714	X.u.V.		
	: .			5 4	mectz 2.6 ugje
NAA	jaw ag -	VBILEB	n i	J T	3,7,3,1,3
WA	0 1-106	715	lab		
	lat dek	(1)			
	low sollo	izati ce	1 /	5.4	
404	Jub blk	VB)KEC	lah	6.3	9 ce tone 28.4 49/8
, , , ,) We is out	7)6		34.7	Styrene 2,3 ug/e (2)0
				5.85	mec/2 2.5 27918
VUA	Low solip	VB KED	1 1	6.2	excetone 12.0 cigle
1 4011	Lab blk	7/7	lab	,	
		,			Α.
	low at			SH	me(1, 2.3 cig) (
VOA		Cenes	NUS		
	trip liek		•	1	
AOV	10W 94	Cen90	NUS		VO
V 0 / 1	trip blk	1 CN7U	ルレン	ĺ	
ONIA	low solld	SB)KS1	A 1.	33-Z 264-	Behp 9.34 4918
BNA	lot bek	ויטומנ	Lac	35.C	dinibypyth. 250 ugle (2) 6
P	LOV JULY			,,,,,	disnectly pull 2.05 ug (2)
BNA	1000 019	SBIK WI	lol-	İ	MD
DOAL.	lat-lek	, ,	<i>y</i> C V		
	tar ven				
	med) and			33,0	Behp 30.05 ugle 0
BNA		SB)k Mi	lab	-	
(AAA)	solid blk		_		
BNA	low 01	cen90	NUS		W
	lar beh	921/10	140.		
	Lav ver				
	- Solid lake	PBS			
pest			lik		NID
	agriculty	PRN	,		
<u> </u>			<u> </u>	-	
0 7	agiceous				1/0
(ريت	agreens	(PNGC)	NUS		
•	Fricia pile	\	V		

LABORATORY REPORTED FIELD BLANK DATA IS COMPARED WITH THE SAMPLE DATA IN A TABULATION FORM WITHIN THE SAMPLE ANALYTICAL DATA SUMMARY, TENTATIVELY IDENTIFIED COMPOUNDS IN BLANKS ARE LISTED ON A SEPARATE FORM.

COMMENTS:

ILT INFERRE	D FROM QUA	ANTITATION LIST,	DIAGNOSTICS, CHR	OMATOGRAM AND/OR SPEC
ND=	hone	detected		
				-

BLANK ANALYSIS RESULTS FOR TENTATIVELY IDENTIFIED COMPOUNDS

ALL TENTATIVELY IDENTIFIED COMPOUNDS FOUND IN BLANK ANALYSES ARE LISTED BELOW: ESTIMATED CONCENTRATION COMPOUND SAMPLE FRACTION COMMENTS SCAN OR 8. T NAME \mathcal{N}^{0} VBIKA VUA NO UKIKAE VO A VISINES ! 690<u>ISO9.3m</u> MS 7.1 mm SOF VOA 870 ISE NB)KFC 7.2 min 270550 2251 16.01 5% IC 28.84 34.74 styreno **₩** 870550 9,2 mm MS VRIKEDI 22 ISB 225 m 15.9 min MS (en851 A(N) ND cen 90 VV V 59015092mm RNA 2-8 (4)K4 SBIKSI 660 GO min 75, 84, 114, 1/9 }- aromoter 2.9 376-54,67,82,96,113,1281 3.2 16,000 3.5 60, 95,97, 130, 132 1 Chlore C4h 10.5 min 2700 58,84 ... 43 14, 2 24M 6.0 40000 475900 19.1 6.7 43,54,69,83,101 24. 3 Tio 440 32.7 8.3 95,96,128 37.0 L ሄ ሬ 1200 43,69,97,02 750 9.6 43,95,112, 128 270 10.6 43,71,85,10,,113 10.1 450 43, 71, 96,128 11.3 (500 43,57,71 85,44 1) Z,4 420 400 126.8 57. 71, 98,112,168, 185, 207) Carper accel 34<u>0</u> Si 135.6 M5 126.1 ISB 2431 820 butil ontholot 26. đina-990 126.6 271 3 V) 27.7 3.7 28.4 dimocral abthel a to 1005001 35.0 84. SNA SBILWILL 35 4418 10.4 2.8mm 14.1 720 .67.87 196 60,95,132 1 KE 130 4.د 24.2 625 41 -4, 69, 53. 10 34.6 207 Soloxan e 37.3 λ 36.9

BLANK ANALYSIS RESULTS FOR TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE #	FRACTION	SCAN #(S) OR R.T	ESTIMATED CONCENTRATION	COMPOUND COMPOUND	OMMENTS
BIEMI	BNA	1 2-8 mm	9 mg/kg	(49.55.34)	
		3.1	110	(54, 67, 92)	
		28.4	12	(73,347,221,357) scloxarl	
		300	64		- £2,
		31.6	110	1	_ 10.4
	1	31.7	35	try design 4 prosphour acyd	14.1
	+	34.4	220	siloxano	19.53
		35.3	20		24,2
	<u> </u>	35.4	22		32.6
		35.7	640		36.9
	-	310	650		
 	.	371	30		
		385	540		
	- ;	36.4	22		
		40.4	410		-
		- 10.4	270		
- !		2.7	6% = 5010.4 m	MS	<u> </u>
<u>!</u>		2.9			
		13.4	790 15014-1		
<u> </u>					
<u> </u>		1 24.5	670 ISO 11 J	1	-
		1 25.4		J	
<u>/</u>		10.20	18% 100 ym	4	
- (1)	0114	0 0	17	14 01	
M90	BNA	2.8 MIN		(56,84, 47)	
+ !	} -	3.1	1 640	(54,67,82)	
!		3.4	120	ME CONTRACTOR	<u></u>
4 !-		6.8	11	(41, 54, 69, 83, 129)	
		<u> </u>			
<u></u>		<u> </u>			
		<u> </u>	<u> </u>		
		1	<u> </u>		
		<u> </u>	!		
		<u> </u>	<u> </u>		
		!	ļ		<u> </u>
			!		
			<u> </u>		
		<u> </u>	<u> </u>		
1		<u> </u>			
			<u> </u>		
		 	<u> </u>		
					
		1	1		

14399.3-100-01

ZA WATER VOLATILE SURROGATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-09-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: SDG No.: CEN76

EPA	1	SI	;	52	i	53	I O T	HER :	TO:	T :
! SAMPLE NO.	1	(TOL)	# {	(8FB)# {	(DCE)#1	ţ	QŲ.	Τ:
	- -	. * = = =	= {	**==	== }			==== ;	==:	=
01:CEN85	1	97	1	96	1	94	}	t	0	!
02 CEN86	1	101	1	101	}	99	1	;	0	1
03:CEN87	ł	89	;	105	1	88	1	}	0	1
04 (CEN89	t	108	ļ	110	l	114	1	ť	0	ŧ
05:CEN90	ŧ	96	- {	101	1	99	t	ŧ	0	1
06:CEN87MS	1	98	1	107	1	92	}	;	Ø	;
07:CEN87MSD	1	97	ł	108	}	98	1	;	0	1
08:VBLKBA	1	103	ł	101	1	104	1	;	0	ļ
Ø9!VBLKEA	1	100	ł	103	1	95	1	1	0	ł
10:VBLKEB	1	100	1	105	i	85	1	1	0	1
l			_;		:		!			_

QC LIMITS

S1 (TOL) = Toluene-d8 (88-110)

S2 (BFB) = Bromofluorobenzene (85-115)

53 (DCE) = 1.2-Dichloroethane-d4 (76-114)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogates diluted out

L

SOIL VOLATILE SURROGATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-09-0035

Lab Code: CLAYIN Case No.: 14399 SAS No.: SDG No.: CEN75

Level:(Iow/med) LOW ___

 										-
: EPA	ł	S 1	- 1	S 2	- 1	S3	OTHER	;	TOT	1
: SAMPLE NO.	1 (TOL) 	(BFB)	#:	(DCE) # [1 (TUC	١.
	=	====	= ; :		= (:		= =====	- ; :	. = =	e ¦
01:CEN76	;	126	* ;	78	;	100	;	ļ	1	1
021CEN76RE	ł	118	* {	81	1	102	}	ł	1	;
03:CEN77	t	130	• {	78	ļ	97	1	1	1	;
04 CEN77DL	:	129	• (78	;	116	1	1	1	ł
051CEN78	1	120	* 1	85	:	101	;	¦	1	1
06:CEN78RE	!	130	* [87	ł	109	1	;	1	1
07:CEN79	ţ	98	!	98	ŧ	95	(1	0	į
08:CEN80	:	99	1	84	ł	93	ł	ł	0	1
09:CEN81	ł	102	- 1	83	ł	93	}	-	0	ł
101CEN82	;	120	* }	93	1	108	}	ł	1	ł
111CEN83	1	108	1	88	:	96	:	1	0	ł
121CEN84	1	101	ł	86	ţ	97	;	;	0	ļ
131CEN88	1	95	}	97	1	96	-	1	0	ł
14:CEN82MS	1	115	1	83	ł	96	1	1	Ø	ł
151CEN82MSD	1	114	}	87	1	103	1	ł	0	-
16!VBLKEC	1	99	;	99	1	92	+	;	0	1
171VBLKED	ļ	100	t 1	100	ł	96	}	1	0	1
	_ا.		_		_!.		!	_		-1

QC LIMITS

- S1 (TOL) = Toluene-d8 (81-117)
- S2 (BFB) = Bromofluorobenzene (74-121) S3 (DCE) = 1,2-Dichloroethane-d4 (70-121)
- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

104

38

SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-09-0035

Lab Code: CLAYIN Case No.: 14399 SAS No.: SDG No.: CEN76

Matrix Spike - EPA Sample No.: <u>CEN82</u> LeveI:(low/med) <u>LOW</u>

COMPOUND	;	SPIKÉ ADDED (ug/Kg)	{	(ug/Kg)	;	CONCENTRATION (ug/Kg)	1	REC	
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	-; -; -;	57.5 57.5	: :	0 0 0 3.59	1 1 1 1	50.0	1	87 79	59-172 62-137 66-142 59-139 60-133

COMPOUND	;	(ug/Kg)	ŧ	CONCENTRATION (ug/Kg)	1	REC	#:	RPD		RPC	
: !,!-Dichloroethene	_;	57.5	1	55.9	;	97	;	-11	;	22	159-1721
: Trichloroethene	_;	57.5	1	47.4	;	82	ŀ	-4	:	24	162-1371
Benzene	_1	57.5	1	5 6. 7	ŀ	99	ŧ	-1	- 1	21	166-1421
: Toluene	_	57.5	;	68.3	ŀ	113	;	-5	;	21	159-1391
: Chlorobenzene		57.5	ţ	57.8	Į	101	}	-6	ļ	21	160-1331
1	_		1		1		_1		_!		_ !;

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: _0 out of _5 outside limits

Spike Recovery: 0 out of 10 outside limits

COMMENTS:

106

		14399	3-110-05	• 3	-110-00
VOLATILE	1A CORGANICS ANALYSI	S DATA SHEET	EPA SAMPLE NO	. E	PA SAMPLE NO.
.ab Name: <u>CLAYTON NO</u>	OVI	Contract: <u>68-09-0035</u>	CEN78		CEN78RE
ab Code: CLAYIN	Case No.: <u>14399</u>	SAS No.: \$[06 No.: <u>CEN76</u>	No	.: <u>CEN76</u>
Matrix: (soil/water)	SOIL	Lab Sample II): <u>830239</u>	8	30239
Sample wt/vol:	5.0 (g/mL) 6	Lab File ID:	E0919	E	0935
.evel: (low/med)	<u>LOW</u>	Date Received	j: <u>06/28/90</u>	 <u>@</u>	5/28/9 0
% Moisture: not dec.	<u>10</u>	Date Analyze	1: <u>07/08/90</u>	. <u>8</u>	7/07/90
olumn: (pack/cap)	PACK	Dilution Fact	tor: 1.0	on:	1.0
		CONCENTRATION UNITS	5 :	1	
CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>U6/</u>	<u>′K6</u> Q	<u>∢6</u>	Q
74-83-9	Trans-1,3-Dich Bromoform 4-Methyl-2-Pen 2-Hexanone Tetrachloroeth 1,1,2,2-Tetrac	de	6 10 1 6	11 11 11 11 11 11 11 11 11 11 11 11 11	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	Ethylbenzene		6 IU 1 6 IU 1 6 IV 1	5 6 6	ו עו
	Total Xylenes_		6 10 1	6	

FORM I VOA 165

1/87 Rev.

1/87 Rev.

. .

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-09-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: SDG No.: CEN76

Matrix Spike - EPA Sample No.: CEN82 Level:(low/med) LOW

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPI CONCENTRA	ATION!(MS CONCENTRA1 (ug/Kg)		; QC ; ;LIMITS; #! REC.;
Phenol	7670	•	ð ;	5640	;	74	26- 90
2-Chlorophenol :	76 70	1 (ð :	5180	ł	68	125-1021
1,4-Dichlorobenzene	3830	;	ð ¦	2500	ł	65	128 1041
N-Nitroso-di-n-prop.(1)	3830	1 9	8 1	2510	1	68	141 1261
! 1.2,4-Trichlorobenzene_{	3830	1 (ð ;	2520	;	68	138 1071
: 4-Chloro-3-methylphenol:	7 670	1 (ð :	6020	1	78	126 1031
Acenaphthene!	3 830	1 0	ð ;	3090	1	81	131-1371
4-Nitrophenol	7670	1 (3 :	8200	;	107	111-1141
2.4-Dinitrotoluene	3830	1 (3 +	258 0	1	70	128- 891
Pentachlorophenol	7570	1 (ð }	3890	1	51	117-1091
Pyrene	3830	11150	ð :	4550	;	89	135-1421
		1					!!

	COMPOUND		SPIKE ADDED (ug/Kg)	10	MSD CONCENTRATION (ug/Kg)	- - - - - -	MSD % REC	*:	% RPD	*:		LIMITS
ì	Phenol	}	7670	1	5650	!	74	1	Ø	;	35	126- 90
ł	2-Chlorophenol	ļ	7670	ł	5500	ŧ	72	1	-6	ŧ	50	125-102
1	1,4-Dichlorobenzene	;	3830	1	258 0	ļ	67	-	-3	;	27	1 28 104
ļ	N-Nitroso-di-n-prop.(1)	ŧ	3830	1	2550	ì	67	1	1	1	38	141 1261
ŀ	1.2,4-Trichlorobenzene_	1	3830	ŀ	2740	1	72	1	-6	;	23	38 107:
;	4-Chloro-3-methylphenol	1	7670	;	4910	!	64	1	20	1	33	126 1031
ţ	Acenaphthene	1	3830	ŧ	3470	¦	91	1	-12	ł	19	131-1371
ţ	4-Nitrophenol	ł	7670	ţ	5700	ţ	74	1	36	ł	50	111-1141
;	2,4-Dinitrotoluene	1	3830	1	2940	!	77	1	-10	ł	47	128- 89:
ł	Pentachlorophenol	ı	7670	1	3520	ŀ	46	- !	10	;	47	117-109
1	Pyrene	1	3830	1	6790	!	147	•	-49	• }	36	35-142

(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: __1 out of _11 outside limits

Spike Recovery: 1 out of 22 outside limits

COMMENTS: INST ID 1A 830208

CASE 14399 CEN-82

383

NK

14399 • 3-204-08

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: CLAYTON NOVI Contract: 68-09-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: SDG No.: CEN76

Lab File ID (Standard): A9990 Date Analyzed: 07/12/90

Instrument ID: 1A Time Analyzed: 0001

Î		RT	IS5(CRY) AREA #	RT		RT
12 HOUR STD	927000	24.17	477000	32.59	299000	36.87
UPPER LIMIT!	1854000		954000	i	598000	
LOWER LIMIT	463500	1	238500		149500	
EPA SAMPLE :	:		!		; ;	
CEN76 CEN77 CEN78 CEN80	932000 1080000 721000	24.191 24.191 24.191	301000	32.591 32.591 32.611	164000 185000 347,90300	36.89 35.89 36.92

IS4 (PHN) = Phenanthrene-d10

ISS (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk

14399 · 3 -204-10

8C

SEMIUOLATILE INTERNAL STANDARD AREA SUMMARY

	AREA #	RT :	AREA #:	RT 1	ISB(PRY) AREA #	RT	
: 12 HOUR STD	140000	24,17	70700 ;	32.57	56100	36.87	}
: UPPER LIMIT	280000	}	141400		112200		•
LOWER LIMIT	70000	1	35350	;	28050		i (
EPA SAMPLE :			 	 			i
CEN78RE	94000 131000 125000 111000	24.15 24.17 24.17 24.19	27600 * 1 38000 1 28800 * 1 237,16600 1	32.57 32.57 32.59	25113800 + 159722100 + 1896200 + 18969840 +	36.87 36.87 36.89	Sim to 80 mis

IS4 (PHN) = Phenanthrene-d10

ISS (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

[#] Column used to flag internal standard area values with an asterisk

14399 . 3-204-12

8C

SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: CLAYTON NOVI	Contract: <u>68-09-0035</u>
Lab Code: CLAYTN Case No.: 14399	SAS No.: SDG No.: CEN76
Lab File ID (Standard): A0020	Date Analyzed: <u>07/13/90</u>
Instrument ID: 1A	Time Analyzed: 1452

;	IS4(PHN) ; AREA #;	RT :	IS5(CRY) AREA #1	RT :		RT :	
12 HOUR STD	160000 :	24.17	58600	32.61	42300	36.91	
UPPER LIMIT:	320000		117200	;	84600	•	
LOWER LIMIT:	80000	}	29300	:	21150	1	
EPA SAMPLE :	!	 	 			 	
CEN79RE : CEN81RE : CEN90 : CEN82MS : SBLKWI :	145000 110000 145000 115000	24.17 24.17 24.19 24.19 24.19	213000 +1 20800 +1	32.593 32.543	v11700 ±	36.921 36.921	Sym to 79 hastra Sym to 81 hastra Canez fine

IS4 (PHN) = Phenanthrene-d10

ISS (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk

QUANT REPORT 4 3 9 9 • 3 - 244-01

Operator ID: JEFF

Quant Rev: 5

Quant Time: 900717 06:09

Output File: ^A0050::QT Data File: > >A0050::06

Injected at: 900717 05:21 Dilution Factor:

1.00000

Name: INST ID 16 830208

Misc: CASE 14399 CEN-82MSD IS-40(43810)

BTL# 1

ID File: CLPID1::D1

Title: SEMI-VOLATILE HAZARDOUS SUBSTANCES EPA LIST

Last Calibration: 900717 04:52

Compound	R.T.	Q ion	Area	Conc	Units	9
1) +1,4-DICHLOROBENZENE-D4 (IS)	10.39	152.0	90840	40.00	no	87
3) PHENOL	3.81	94.0	228951	73.73	פח	90
6) 2-CHLGROPHENOL		128.0	216786	71.74	ng	100
8) 1,4-DICHLOROBENZENE	10.42	_	119102	33.65	ng	96
13) 4-METHYLPHENOL	11.81		21553	9.91	ng	94
14) N-NITROSO-DI-m-PROPYLAMINE	11.74	70.0	58867	33.22	ng	96
16) 2-FLUOROPHENOL (SS)	7.39	112.0	203322	79.52	ng.	100
17) PHENOL-D5 (SS)	9.78	99.0	211019	69.74	ng .	100
18) *NAPHTHALENE~D8 (IS)	14.07	136.0	243634	40. 88	ng 🦠	100
26) 1,2,4-TRICHLOROBENZENE	13.97	180.0	99844	35.83	ng .	97
27) NAPHTHALENE	14.12		14863	2.16	ng i	* 10 0
30) 4-CHLORO-3-METHYLPHENOL	16.09		101358	64. 8 2	ng ?	∌ e
31) 2-METHYLNAPHTHALENE	16.27		11027	2.67	TIES S	ų 3 7
32) NITROBENZENE-05 (SS)	12.02		83621	34.55	ng 🛊 🧸	76
33) *ACENAPHTHENE-B10(IS)	19.55		12 080 6	40.00	ng 🔭	94
42) ACENAPHTHENE	19.65		178761	45.16	ng	79
44) 4-NITROPHENOL	20.34		15894	74.37	ng	100
45) BIBENZOFURAN — acld	6 20.15		18754	3.69	110	95
46) 2,4-DINITROTOLUENĘ (20.38	<i></i>	40429	38.26	ng	81
50) FLUORENE - 9dd		166.9		5.86	00	99
52) 2-FLUOROBIPHENYL (SS)	17.53		170807	34.50	ng	991
53) 2,4,6-TRIBROMOPHENOL (SS)	22 .6 7		56617	71.35	ng	100
54) *PHENANTHRENE-D10 (IS)	24.15		131229	40.66	ng	100
59) PENTACHLOROPHENOL	23.86		20265	45.86	ng	97
60) PHENANTHRENE	24.24		201254	51.98	ng	100
61) ANTHRACENE	24.37		22671	5.81	ng	160
62) OI-n-BUTYLPHTHALATE	25.41		4447	1.67	ng	100
63) FLUORANTHENE	28.00		142643	53.51	ng	74
64) +CHRYSENE-012 (15)	32.57		28767	40.00	ng	100
66) PYREN	28.76		172516	88.46	ng	100
67) BUTY PARMATE	31.69		1586	2.48	ng 	48
69) BENZON PARACENE	32.53 33. 6 5		17487 132 0 1	19. 0 1 17.54	ng	83
70) BISCHART HEXTCOPHTHALATE 71) CHRYSINE	32.65		20483		ng	100
72) TERPHENYL-014 (SS)	29.35		48 00 6	21. 04 37.51	ng	90
73) +PERYLENE-012 (IS)	36.87				ng	100
74) DI-N-OCTYLPHTHALATE	34.89		17272 6895	46.60	ng	100
76) BENZO(k) FLUORANTHENE - add	₼ 35.8 6 °		23974	9.43 37.6 0	ng /	1 00 75
77) BENZO(a)PYRENE	36.76		9564	16.16	אר איספר	95
78) INDENG(1,2,3-cd)PYRENE		276.0	1911	3.09	ng ng	100
79) DIBENZO(a,h)ANTHRACENE - 04	440.86		693	(1.44	10	100
80) BENZO(g,h,i)PERYLENE	41.88		2257	4.68	ng .	100
: weeten a martin at the transfer	*****			7.40	• • •	

^{*} Compound is ISTD

/ porlateo

-210-16 14399 • 3 =>10-14 EPA SAMPLE NO. ern SAMPLE NO. SEMIVOLAT ORGANICS ANALYSIS DATA SHEET CEN80RE CEN80 Lab Name: CLAYTON NOVI Contract: 68-09-0035 Lab Code: CLAYTN Case No.: 14399 SAS No.: SDG No.: CEN76 6 No.: CEN76 Lab Sample ID: Matrix: (soil/water) SOIL 830206 1: 830205 30.0 (g/mL) 6 Lab File ID: A9995 A0014 Sample wt/vol: (low/med) LOW 06/28/90 06/28/90 Level: Date Received: d: 06/28/90 % Moisture: not dec. ___16 Date Extracted: 06/28/90 dec. Extraction: (SepF/Cont/Sonc) 07/13/90 SONC Date Analyzed: 07/12/90 (Y/N) Y (or: 1.8 6PC Cleanup: pH: _ 7.1 Dilution Factor: 1.0 CONCENTRATION UNITS: 3: Q CAS NO. COMPOUND /K6 (ug/L or ug/Kg) <u>U6/K6</u> 1 99-09-2-----3-Nitroaniline 3800 :0 3800 10 790 10 1 83-32-9-----Acenaphthene 790 10 3800 : 0 3806 10 | 100-02-7----4-Nitrophenol 3800 3800 10 10 :0 790 ΗU 790 790 ;U 1 121-14-2-----2,4-Dimitrotoluene 790 ΗU : 84-66-2-----Diethylphthalate_ 790 ΙU 790 10 : 7005-72-3----4-Chlorophenyl-phenylether 790 ٠U 790 ١U 790 IU : 86-73-7-----Fluorene 790 ΗU 1 100-10-6---- 4-Nitroaniline 3800 10 3800 10 3800 1 534-52-1----4 6-Dimitro-2-Methylphenol 3800 ÷υ 10 | 86-30-6----N-Nitrosodiphenylamine (1) 790 790 ١U ΗU : 101-55-3-----4-Bromophenyl-phenylether 790 ΗU 790 ŧ۷ 790 ŧυ 790 ٠U : 118-74-1------Hexachlorobanzene : 87-86-5-----Pentachlorophenol 3800 3800 10 ΗU : 85-01-8-----Phenanthrene 790 ٠U 790 10 1 120-12-7----Anthracene 790 10 790 ١U 790 790 10 : 84-74-2----Di-n-Butylphthalate - I U 790 10 1 206-44-0-----Fluoranthene 790 10 1 129-00-0------Pyrene 790 10 790 : U I 85-68-7-----Butylbenzylphthalate 790 790 ٠U HU 1 91-94-1-----3,3'-Dichlorobenzidine 1500 : U 1600 ÷υ | 56-55-3-----Benzo(a)Anthracene_ 790 10 790 ΙŲ 1 218-01-9-----Chrysena 790 ŧυ 790 ΗU ⊹BJ : 117-81-7-----bis(2-Ethylhexyl)Phthalate 610 |BJ 440

790

790

790

790

790

790

790

ΗU

ΗU

10

ΗU

ΗU

ΗU

ΗU

790

790

790

790

790

790

790

ΙU

ΗU

ŧυ

10

ΗU

ΗU

10

(1) - Cannot be separated from Diphenylamine

| 117-84-0-----Di-n-Octyl Phthalate

: 205-99-2----Benzo(b)Fluoranthene

} 207-08-9----- -- Benzo(k)Fluoranthene

1 193-39-5----Indeno(1,2,3-cd)Pyrene

1 53-70-3----- --- Dibenz(a,h)Anthracene

1 191-24-2----Benzo(g,h,i)Penylena_

: 50-32-8-----Benzo(a)Pyrene

3D SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 CLAYTON NOUI
 Contract:
 68-D9-0035

 Lab Code:
 CLAYTN
 Case No.:
 14399
 SAS No.:
 SDG No.:
 CEN75

Matrix Spike - EPA Sample No.: CEN83 Level:(low/med) MED

:		: SPIKE : ADDED		SAMPLE ENTRATIO	N I C	MS DNCENTRATI	1 0N1	MS %	QC LIMITS
;	COMPOUND	(ug/Kg)		τā\Kā)		(ug/Kg)			#! REC.
; = !	Phenol	1222000	:;== = =:	()	:= =: !	116000	*=; !	***** 52	:======: :26- 90:
		1222000	Ì	ø	i	132000		59	25-1021
	1,4~Dichlorobenzene	1111000	!	Ø	1	65300	1	59	128 1041
ļ	N-Nitroso-di-n-prop.(1)	1111000	‡	Ø	1	58200	1	52	141 1261
ļ	1,2,4-Trichlorobenzene	1111000	i i	0	1	72700	ł	66	138 1071
ŀ	4-Chloro-3-methylphenol	222000	;	0	;	122000	;	55	126 1031
ŀ	Acenaphthene	1111000	:	0	1	86400	:	78	131-1371
!	4-Nitrophenol	1222000	;	0	;	55600	;	$\sqrt{25}$	111-1141
!	2,4-Dinitrotoluene	1111000	:	Ø	1	82700		75	128- 891
ŀ	Pentachlorophenol	1222000	!	0	}	113000	- 1	51	117-1091
ļ	Pyrene	1111000	!	Ø	;	90200	1	81	135-1421
1_		1	!		_ _		1		11

-		: SPIKE		MSD	1	MSD	1		1		:
ł		1 ADDED	i	CONCENTRATION	H	X	- 1	7	ł	QC	LIMITS
;	COMPOUND	(ug/Kg))	(ug/Kg)	ļ	REC	#	RPD	# ;	RPD	REC.
; =		; ======	= ;	*********	1		= ;	====:	¦		= =====
ŧ	Phenol	1222000	ļ	110000	ł	50	- 1	4	ł	35	126- 90:
ł	2-Chlorophenol	1222000	ļ	117000	;	53	;	11	¦	50	125-1021
1	1,4-Dichlorobenzene	1111000	;	62700	ł	56	ł	5	;	27	128 1041
1	N-Nitroso-di-n-prop.(1)	1111000	ľ	59300	ţ	53	ļ	-2	¦	38	141 1251
;	1,2,4-Trichlorobenzene_	1111000	1	68 900	1	62	}	6	ţ	23	138 1071
;	4-Chloro-3-methylphenol	1222000	1	122000	ļ	55	1	0	;	33	126 1031
1	Acenaphthene	1111000	:	80900	1	73	1	7	;	19	131-1371
;	4-Nitrophenol	1222000	:	118000	1	53 -	/	-72	* ;	50	111-1141
}	2,4-Dinitrotoluene	1111000	:	77300	;	70	- 1	7	;	47	128~ 891
1	Pentachlorophenol	1222000	1	92200	1	42	1	19	:	47	117-1091
;	Pyrene	1111000	1	86900	1	78	+	4	;	36	135-1421
;_			_ ;		. ! _		_1		_:		_ 11

(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk

RPD: 1 out of 11 outside limits
Spike Recovery: 0 out of 22 outside limits

COMMENTS:

384

^{*} Values outside of QC limits

CRDL = 760 ug/kg

i	0		(
1.	C en82	CEN82M>	(EN82	m s p
11-mephenol	510	5 8 0	760	- / Ot
naphthalend	100	81	170 60	rac ok
¿ me naybith	90	91	200	Macac
alemaphthone	72	ND	ND	
- herenter	830	550	4000 J	/ /
C. Yhracene	120	joo	450 244	L/ KCraL
flurarithere	\30 U	560	4100 5	1
"yene	1200	ms	ms	
W influenceme	620	270	1500	
Behp	1900 B	1500 B	1300 B	B
Chypere	557	280	1600 5	
505)-fluor.	900	650		3 Damen
(.k) fluor.		_	(2900) add J	
h a) pyrene	370	240	1200	✓
)4deno (123d)pgs	94	100	240	2 Chesic
l'inzo(gh) pery		80	360	
- i enzofmen		ND	(280) and	
1 horene	MD	NO	450 000	
1 being (ah) an	Haure ND	(ND	(119. og)	, <i>V</i>

SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-D9-0035

Lab Code: CLAYIN Case No.: 14399 SAS No.: SDG No.: CEN-76

Matrix Spike - EPA Sample No.: <u>CEN-82</u> Level:(low/med) <u>LOW</u>

COMPOU	1	SPIKE ADDED (ug/Kg)	1	SAMPLE CONCENTRATION (ug/Kg)	į	(ug/Kg)	!	REC	QC LIMITS # REC.
·	HC (Lindane)		-	0		72.8		119	146-1271
l Heptach	lor!	61.2	1	0	ŧ	66.7	ł	109	135-1301
Aldrin_	{	61.2	t	0	l	70.5	l	115	134-1321
	1	153	1	0	t	179	ŀ	117	131-1341
Endrin_		153	1	0	t	179	l	117	142-1391
1 4,4'-00		153	ł	0	1	194	ŀ	127	123-1341
l	\		_1_		۱_		[11

gamma-BHC (Lindane)	1	SPIKE ADDED (ug/Kg)		REC 1	I RPD		QC LIMITS RPD REC.
Dieldrin	gamma-BHC (Lindane) Heptachlor	61.2 61.2	59.0 l 58.4	96 95	1 21		50 46-127 31 135-130
! 4.4'-DDT	Oieldrin	153 153	1 158 1 155	103 101	l 13	; ; ;	38 131-134 45 142-139

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: _0 out of _6 outside limits

Spike Recovery: _0 out of _12 outside limits

COMMENTS:

1084

~RH 01/23/90

^{*} Values outgide of QC limits

2F SOIL PESTICIDE SURROGATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-D9-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: SD6 No.: CEN-76

Level:(low/mad) LOW__

t EPA	l 51	IOTHER :
I SAMPLE NO.	(OBC)#	1 1
		=====
01 (PBLKS)	111	1 0 1
02:CEN-76	104	1 0 1
031CEN-77	98	1 0 1
041CEN-78	105	1 0 1
05 CEN-79	90	1 0 1
06 : CEN-80	: 94	0 1
07 CEN-81	97	1 0 1
081CEN-82	110	1 0 1
091CEN-83	93	(0 (
101CEN-84	91	1 0 1
111CEN-88	133	1 0 1
121CEN-82MS	109	1 0 1
131CEN-82MSD	102	1 0 1
l	l	II

ADVISORY QC LIMITS

S1 (DBC) = Dibutlychlorendate (20-150

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

1083

URHU7/23/90

ZE WATER PESTICIDE SURROGATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-09-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: SDG No.: CEN-76

	EPA SAMPLE	NO.	(080)#	OTHE	1	
01 il	PBLKW1 CEN-90		•	1 00 97	; ;	0)	

ADVISORY QC LIMITS

St (DBC) = Dibutlychlorendate

(24-154)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

-RH07/23/90

1082

PROJECT NAME: 5t - Ch 3al- TOD NO.: F3- 9005-31	ex h	<u> </u>	<u>Hosp</u> -	·.				EPA REG	SIT	E N	O. :		<u>)C 1</u>	4		<u>-</u>	
SUPPORT DOC INORGAN											/ OF	•			•		
CASE/SAS NO.: 14399					APPLICABLE SAMPLE NO's.:												
TYPE OF ANALYSIS: AW IN		MCDT 88,89,91,92 90															
CONTRACT LABORATORY: KMAL						MCT85,86, x7, 90 >											
7 / 1				-	MCDX 29-34 3 30405												
REVIEW DATE : 1991							<u> </u>										
				_										-			
THE FOLLOWING TABLE INDICATES IN					EXAMINED PROBLEM AREAS DETAIL IDENTIFIED							SUPPORT DOCUMENTATION ATTACHMENTS					
DETAIL, THE IDENTIFIED PROBLEM AREAS, AND SUPPORT DOCUMENTATION ATTACHMENTS:			FOOT	MEN	(V) IF YES NOTE LETTER MENTS BELOW			CHECK(V) IF YES OR FOOTNOTE NUMBER FOR COMMENTS BELOW					CHECK (V) IF YES OR IDENTIFY ATTACHMENT NO.				
	4LL APPLICA	ICP OF SES	FURNACE	COLD VALS	CYAN	ALL APPLICE	ICP OR SES	FURNACE	COLD VARGE	CYA	ALL APPLICA	ICP OF THE	FURNACE	COLD VAPOS	CYANIO	30	
HOLDING TIMES	1	_	/	/ -	_	 ` -			/ -	\leftarrow			_		\dashv		
BLANK ANALYSIS RESULTS			 	┼	-	 	 		_	 		: I			\dashv		
MATRIX SPIKES (PRE-DIGESTION)	-				 -	 			 		<u> </u>		\vdash		{		
DUPLICATES	-	 	\vdash	 	 	 		 	 						\dashv		
QUANTITATION OF RESULTS		 		 	 	 						-			$\neg \neg$		
DETECTION LIMITS/SENSITIVITY	/	 	†						_						\dashv		
INITIAL CALIBRATIONS	7			 -					_						\neg		
CONTINUING CALIBRATIONS			\vdash	 				_							\neg		
LABORATORY CONTROL STANDARDS		 		 		T -									\neg		
ICP LINEAR RANGE ANALYSIS	1		<u> </u>												\Box		
ICP INTERFERENCE CHECKS	1			 										$\overline{}$	\neg		
ICP SERIAL DILUTIONS																	
GFAA POST- DIGESTION SPIKES																	
GFAA DUPLICATE BURNS	\			<u></u>													
GFAA STANDARD ADDITIONS		<u> </u>															
OTHERS COMMENTS :																	

BLANK ANALYSIS RESULTS SAMPLE # SOURCE OF H20 CONTAMINANTS (CONCENTRATION / DETECTION LIMI TYPE CONC MATRIX TASK Instral ICB Metals lobcal leks CCBs (CB Cu * PBCk 4.47 314 Ca MCDT92 NVS 92.0 FR 4 blank <u>3</u>1 Mittal 408. k * Watals lab 1CB Cal 3/^ Contin 181. 3 440 (a * CCB 4.3 30 9. 2 <u>87.8</u> 4918 PB1k 129.8 LABORATORY REPORTED FIELD BLANK DATA IS COMPARED WITH THE SAMPLE DATA IN A TABULATION FORM WITHI SAMPLE ANALYTICAL DATA SUMMARY. **COMMENTS:** (1) RESULT REPORTED BY LABORATORY AND CONFIRMED BY REVIEWER. (2) RESULT INFERRED FROM RAW DATA

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CLAYTON NOVI ____ Contract: 68-09-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: _____ SDG No.: CEN76

Matrix Spike - EPA Sample No.: CEN87

: : COMPOUND	1	(ug/L)	1	CONCENTRATION (ug/L)	I NC	CONCENTRATION (ug/L)	!	% REC	#1	REC.	S
1,1-Dichloroethene Trichloroethene Benzene	-¦	50.0 50.0 50.0	1	Ø Ø Ø	;	41.5 43.8 47.4		83 88 95	17	1-14 1-12 6-12	5 i 0 i 7 i
Toluene Chlorobenzene 		50.0 50.0	 	0 0	 - -	45.7 46.5					

1	(ug/L)	_	REC	# RPD	QC LIMITS :
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50.0 50.0 50.0 50.0	41.3	83 92	; 0 ; -4 ; 5 ; -3	14 161-145 14 171-120 11 176-127 13 176-125 13 175-130

-# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: <u>0</u> out of <u>5</u> outside limits

Spike Recovery: <u>0</u> out of <u>10</u> outside limits

COMMENTS:

105

1 4 3 9 9 • 3 = 210 -05 3-210-01 EPA SAMPLE NO. EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CEN78RE CEN78 Lab Name: CLAYTON NOVI Contract: <u>58-D9-0035</u> 506 No .: CEN76 Lab Code: <u>CLAYTN</u> Case No.: 14399 SAS No.: SDS No.: CEN76 830204 , ID: Matrix: (soil/water) SOIL Lab Sample ID: 830204 Sample wt/vol: 30.0 (g/mL) G A@@12 Lab File ID: A9993 05/28/90 06/28/90 Level: (low/med) LOW .ved: Date Received: icted: 05/28/90 % Moisture: not dec. __10 Date Extracted: 06/28/90 dec. /zed: 07/13/90 (SepF/Cont/Sonc) SONC Extraction: Date Analyzed: <u>07/12/90</u> GPC Cleanum: аН: <u>6.5</u> Factor: 1.0 (Y/N) Y Dilution Factor: 1.0 JITS: CONCENTRATION UNITS: ۵ CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> O UG/KG : 108-95-2--- ----Phenoi 730 7.0 730 ₹0 1 111-44-4-----bis(2-Chloroethyl)Ether 730 10 730 10 1 95-57-8-----2-Chiorophenol 730 HI730 10 730 ŧυ 1 541-73-1------1,3-0:chlorobenzene 730 ١U 1 106-46-7-----1,4-Dichlorobenzene 730 10 730 111 730 10 100-51-6-----Benzyl Alcohol 730 ίÚ : 95-50-1-----1,2-Dichlorobenzene 730 730 3113 730 111 95-48-7-----2-Methylphenol 730 10 : 39638-32-9----bis(2-Chloroisopropyl)Ether 730 10 730 £U 730 106-44-5-----4-Methylphenol_ 730 10 10 621-64-7----N-Nitroso-Di-n-Propylamine 730 730 ΗU 730 $\pm u$ 730 ŧυ 730 14 : 98-95-3-----Nitrobenzene 736 ΗU 730 78-59-1------Isophorone 730 10 113 730 88-75-5----2-Nitrophenol 730 ١U 105-67-9-----2.4-Dimethylphenol 730 730 10 ΗU 3600 10 3500 ΙU : 111-91-1-----bis(2-Chloroethoxy)Methane 730 730 tu 10 730 111 120-83-2-----2,4-Dichlorophenol_ 730 W 730 10 1 120-82-1-----1,2,4-Trichlorobenzene 730 :11 730 111 91-20-3-----Naphthalene 730 ١U 730 10 1 106-47-8-----4-Chloroaniline 730 ΗU 730 87-68-3-----Hexachlorobutadiene 730 : 0 :U 730 1 U 59-50-7-----4-Chloro-3-Methylphenol 730 ŧυ : 91:57-6-----2-Methylnaphthalene_ 730 730 10 111 730 10 : ??~4?-4-~-~---Нехаchlorocyclopentadieпе 730 ΗU 88-06-2----2.4,6-Trichlorophenol 730 10 730 10 3600 វប 95-95-4-----2.4.5-Trichlorophenol 3600 H : 91-58-7----2-Chloronaphthalene 730 10 730 ‡U 3600 ÷U : 88-74-4-----2-Nitroaniline 3600 ΙU

1/87 Rev.

730

730

730

11

10

10

:∪

FORM I SU-1

: 131-11-3-----Dimethyl Phthalate

: 506-20-2-----2.6-Dinitrotoluene

208-98-8----Acenaphthylene

730

730

730

+U

ΗU

: 0

1/87 Rev.

1 4 3 9 9 . 3 -210-06 210-08 1 C EPA SAMPLE NO. EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CEN78 CEN78RE Lab Name: CLAYTON NOVI Contract: 58-09-0035 Lab Code: <u>CLAYTN</u> Case No.: 14399 SAS No.: ____ SDG No.: CEN76 DG No.: CEN76 Matrix: (soil/water) SOIL_ Lab Sample ID: 830204 830204 3<u>0.0</u> (g/mL) G Sample wt/vol: Lab File ID: A9993 A0012 Level: (low/med) LOW Date Received: 06/28/90 06/28/90 % Moisture: not dec. 10 Date Extracted: 06/28/90 dec. ed: 06/28/90 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 07/12/90 07/13/90 GPC Cleanup: (Y/N) Y pH: 6.5 Dilution Factor: 1.0 tor: 1.0 CONCENTRATION UNITS: ς. CAS NO. COMPOUND (ug/L or ug/Kg) UG/K6 Q 0 ij/**KĢ** : 39-03-2-----3-Nitroaniline 3666 3600 83-32-9-----Acenaphthene_ 730 ΗU 730 : U ; 51-28-5-----2,4-Dinitrophenol 3600 1U 3600 111 : 100-02-7----4-Nitrophenol 3500 ١U 3600 HU | 132-64-9-----Dibenzofuran 730 10 1.0 730 121-14-2----2.4-Dimitrotoluene 730 730 i U : 84-66-2-----Diethylphthalate_ 730 10 73**0** 10 7005-72-3 -----4-Chlorophenyl-phenylether 730 2.11 730 111 85-73-7----Fluorene 730 ; U 730 ΙU : 100-10-6----4-Nitroaniline 3600 10 3500 10 534-52-1-----4.5-Dinitro-2-Methylphenol 3600 10 3600 141 86-30-6----N-Nitrosodiohenylamine (1) 730 730 (11) : 101-55-3- -----4-Bromophenyl-phanylether 730 111 730 $\mathbb{I} U$ 118-74-1-----Hexachlorobenzene 730 10 730 10 : 87-86-5 ------Pantachlorophenol 3600 3600 : U : 85-01-8-----Phenanthrene 450 460 75 87 84-74-2----Di-n-Butylphthalate COB <u>310</u> ij 370 206-44-0-----Fluoranthene 660 l.I 820 129-09-0-----Pyrene_ 1200 : 85-68-7-----Butylbenzylphthalate 730 ١U 730 ! U 1 91-94-1-----3.3'-Dichlorobenzidine 1500 łU 1500 : U : 56-55-3-----Benzo(a)Anthracene 730 470 : 218-01-9-----Chrysene SRA 730 1.1 117-81-7-----bis(2-Ethylhexyl)Phthalate 580 ΙĐJ BJ 450 730 Ü 730 10 : 205-99-2-----Benzo(b)Fluoranthene 1000 870 | 207-08-9-----Benzo(k)Fluoranthene 730 111 600 50-32 -8-----Benzo(a)Pyrene 510 ! ! 510 : 193-39-5------Indeno(1,2,3-cd)Pyrene_ 290 ! .1 390 53-70-3----Dibenz(a,h)Anthracene 100 730 1 191-24-2----Benzo(g,h,1)Perylane_ 350 <u>350</u> (1) - Cannot be separated from Diphenylamine

BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT85

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	C	Cor 1	rt: C	inuing Cal: Blank (ug, 2	ibi /L) C	ration) 3	c	Prepa- ration Blank	C	M
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Chromium Chromium Chromium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide											F

3 BLANKS 00014

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT88

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	C	Coi 1	nt: C	inuing Cali Blank (ug/ 2	bı (L)	ration	С	Prepa- ration Blank C M
Aluminum_	25.0		25.0	U U		Ä	25.0	빞	25.000 U P 24.000 U P
Antimony_ Arsenic	24.0	ַע	24.0	ᄬ	24.0	U	24.0	U	24.000 U P
Barium	2.0	Ū	2.0	Ū	2.0	Ū	2.0	Ū	2.000 U P 1.000 U P
Beryllium Cadmium	$\frac{1.0}{5.0}$	¥	1.0	מששש	1.0	UU	1.0	뭐	2.000 U P 1.000 U P 5.000 U P 66.000 U P
Calcium_	66.0	벌	66.0	籄	66.0	뾰	66.0	뜅	5,000 U P 66,000 U P
Chromium_	5.0	U	5.0	Ū	5.0	U	5.0	Ū	5.000 U P
Cobalt Copper	<u>6.0</u>	U	4.0	מממממ	6.0	U U	<u>6.0</u> 4.0		6.740 B P
Iron	$\frac{3.0}{-23.1}$	B	22.0	Ŭ	22.0	Ū	22.0	픐	22.000 U P
Lead	20.0	Ä	20.0	핓	20.0	U	20.0	빞	20.000 U P 76.000 U P
Magnesium Manganese	76.0 8.0	U U	76.0 8.0	발	76.0	U U	76.0 8.0	빏	20.000 U P 76.000 U P 8.000 U P
Mercury				l		_			<u></u>
Nickel Potassium	10.0	U U	10.0	띺	10.0	<u>u</u>	10.0	ᄪ	10.000 U P 115.000 U P
Selenium	115.0	¥	115.0	¥	115.0	Ţ	115.0		115.000 U P
Silver_	6.0	U U	6.0	및 U	6.0	Ü	60	Ü	6.000 U P
Sodium Thallium	1100.0	Ц	1100.0	ᄪ	1100.0	U	1100.0	띡	1100.000 U P
Vanadium_	4.0	Ū	4.0	Ū	4.0	Ū.	4.0	Ū U	4,000 U P
Zinc	4.0 1.0	Ū	1.0	띺	1.0	Ū	1.0	피	4,000 U P 4,920 B P
Cyanide		-		-		-		-	

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT88

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С		nt:	inuing Cal Blank (ug, 2	ibi /L	ration) 3	С	Prepa- ration Blank	С	м
Aluminum_ Antimony_		<u> </u>		_		<u> </u>		<u> </u> -		T=l	
Arsenic		=		_		=		-		[-[
Barium Beryllium	<u> </u>	 -		-		-		1-1		1-1	
Cadmium				_		=		_			
Calcium Chromium		-		-		-		-		-	\ <u></u>
Cobalt		<u>-</u>		_		_				-	
Copper	· · · · · · · · · · · · · · · · · · ·	-		-		-		-		1-1	 —
Lead		_	1.0	Ī	1.0	Ū					F
Magnesium Manganese	\ -	-		_		-		-		1-1	
Mercury		-		_		_					
Nickel Potassium	<u> </u>	-		-		-		1-1		1-1	
Selenium		=	2.0	Ū		_					F
Silver Sodium		-		-		-		1-1		-	
Thallium		_	1.0	Ū		=					F
Vanadium_ Zinc	i	-		-		-]-		-	
Cyanide		_		_		_					
		 _	<u> </u>	_		 _	<u> </u>	1_1	l	1_1	1

88772M M 40769 N 40791 S 19702M

SAMPLES

EDG WCOL &&:

CRDL STANDARD FOR AA AND ICP

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT88

AA CRDL Standard Source: BAKER

ICP CRDL Standard Source: BAKER

Concentration Units: ug/L

Analyte	CRDL S	tandard fo	or AA %R	True	CRDL Stand Initial Found	dard fo	or ICP Final Found	%]
Aluminum_ Antimony_ Arsenic	10.0	9,70		120.0	143.47		121.73	101
Barium Beryllium Cadmium Calcium		3. /0		10.0	10.87 10.08		10.58 10.76	105 107
Chromium Cobalt Copper				20,0 100.0 50.0	20.62 105.48 53.50	103.1 105.5 107.0	18.60 106.93 52.31	93 106 104
Iron Lead Magnesium Manganese	3.0	3.00	100.0	30.0	32.81	105.1 109.4	<u>41.41</u> <u>29.60</u>	103 98
Mercury Nickel Potassium				80.0	80.21	100.3	83.08	
Selenium_ Silver Sodium	5.0	4.90		20.0	17.78	88.9	18.27	91
Thallium_ Vanadium_ Vinc	10.0	10.20	102.0	100.0 40.0	105.93 44.53	105.9 111.3	104.08 44.08	104 110

4 ICP INTERFERENCE CHECK SAMPLE

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT88

ICP ID Number: <u>JA9000</u> ICS Source: <u>EPA-LV-1287</u>

Concentration Units: ug/L

	T	rue	Ini	itial Found	i		Final Found	
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	A	AB	A	AB	₹R	A	AB	&R
Aluminum_ Antimony	502000	508000	496559 27	500651.4 70.4	98.6	4899 <u>17</u> 23	483296.9 32.4	95.1
Arsenic								
Barium_ Beryllium		<u>483</u>	9	<u>477.4</u> 475.5	98.8 100.3	<u>10</u>	463.1 454.8	95.9 96.0
Cadmium_		909	-8	977.2	107.5	-4	907.2	99.8
Calcium	506000		506994	510945.2	99.0	498822	490303.3	95.0
Chromium_		513	22	488.0	95.1	20	469.4	91.5
Cobalt		478	1	462.1	96.7	5	449.2	94.0
Copper		534	7	530.4	99.3	6	514.9	96.4
Iron	196000		181177	183282.2	90.3	179276	176677.8	87.0
Lead	10000	4850	8	4692.2	96.7	506705	4602.5	94.9
Magnesium	498000		528107	_534434.5	105.0	526725	520865.8	
Manganese Mercury_		<u> 531</u>		471.8	88.8	-3	457.7	86.2
Nickel		916	<u>-5</u>	886.4	96.8	2	869.9	95.0
Potassium Selenium			-35	<u>-35.3</u>		-22	<u>-76.1</u>	
Silver		993	-0	952.6	95.9	<u>-1</u>	940.9	94.8
SodiumThallium			1116	<u>-315.8</u>		-677	-1551.2	
Vanadium_		475	6	492.2	103.6	6	477.0	100.4
Zinc		973	4	949.8	97.6	6	925.4	95.1
	l				l			l

20

SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-09-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: SDG No.: CEN76

Level:(low/med) LOW

	EPA		5	1	1	S2	1	\$3	1	54	;	S5	Ī	56	I O T	HER	11	01	1	
	SAMPLE .	NO.	(NB	Z)#	1 (FBP)#¦(TPH)# ¦	PHL)# ¦	(2FP)#¦	(TBP)#:		10	UT	1	
	*****		===	===	=	===:	:	*===	== ¦ :		∓ ≠ ¦	3 3 5 5 1	== ;	*===:	= ==	====	: ¦ =	= 2	• {	
01	CEN76		6	7	ł	79	i	117	;	71	;	69	}	68	}		ł	0	1	
02	CEN77		6	2	ł	71	ľ	116	ł	66	ŀ	65	1	76	;		ţ	Ø	ł	
03	CEN78	;	6	5	1	74	1	124	;	74	ļ	73	- 1	81	}		;	Ø	1	
04	CEN78RE		7	7	1	83	- 1	119	1	79	ł	80	1	78	;		;	0	ł	
Ø5 .	CEN79	1	6	3	1	63	;	95	}	54	;	75	:	72	1		ł	0	;	
Ø6 i	CEN79RE	1	7	8	ł	81	1	119	1	73	i	79	ł	75	1		1	0	ï	
07	CEN80	}	6	4	1	73	;	137	:	69	1	67	-	77	;		1	0	\mathcal{T}	you wear
08	CEN8ØRE	1	6	2	1	71	ł	104	ł	66	1	72	!	66	1		1	0	1	,
09	CEN81		6	0	:	71	ļ	119	:	60	;	68	1	52	1		1	0	ή.	low week-
10	CEN81RE		8	5	;	84	-	134	- }	76	;	84	}	65	!		1	0	ψ	185 5+6
11	CEN82	1	7	6	;	94	}	100	}	75	:	78	;	93	1		1	0	1	•
12	CEN84	1	5	6	1	61	}	85	1	60	1	63	1	67	1		1	0	1	ŝ
13	CEN88	1	6:	5	:	72	ł	82	1	70	i	75	+	68	1		1	0	ł	*
14	CEN82MS		6	3	:	70	1	93	- {	66	;	74	ł	72	1		;	0	t	:
15	CEN82MSD	}	6	9	:	69	}	75	!	70	1	80	1	71	;		!	0	1	
16	SBLKS1		7:	В	:	76	1	104	+	73	;	75	1	84	1		;	0	1	
}	·		}		!		_¦_		!		1		_ ;		_ _		.1_		. 1	

				Ų(> FIUII2
S1	(NBZ)	=	Nitrobenzene-d5	(23-120)
52	(FBP)	=	2-Fluorobiphenyl	(30-115)
S 3	(TPH)	=	Terphenyl	(18-137)
S4	(PHL)	=	Phenol-d5	(24-113)
S5	(2FP)	-	2-Fluorophenol	(25-121)
\$ 6	(TBP)	=	2,4,6-Tribromophenol	(19-122)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogates diluted out

TDL 1, 2 ugle

Case No.: <u>14399</u>

Us < IDL __Graphite Furnace Spike Recovery Evaluation Form

							er de	_
	Sample ID	Instr. Level Result	PDS Recovery	Diluted Result	Diluted pos Recovery	MSA Result (if needed)	Final Result Reported Malka	
MC	DT85	18.7	90_				4.41	
	DT85D	19.1	85				4.5 1	
	DT855						75%]
MC	DT86	(2,7	91				2-84	
MC	DT87	21.0	86				5.1 /	•
MC	DT90	2.8	94				-73 /	<u> </u>
MC	DX29	10.8	86				2,41	
MC	DX30	16.9	හට			19.5	4.6 ~	<u> </u>
	DX31	8,6	90				1,9	-
	DX32_	9.1	93				2.2	
	DX33	NO	92			i	.24 U-	Į
MC	DX34	2.8	88				662	[
								ļ
		<u> </u>		<u> </u>				<u> </u>
								de 1
MC	DT85	NO_	52				1 4	spl
MC	DT85D	NP	54				<u>U</u>	specy
MC	DT85 S	1 4.4					442	/
MC	DT86	3,1	38	NO × 10	112		10 × U V	1
e <u>MC</u>	DT87	No	84				1.	-
	DT90	NO	75				1-4,	}
	DX29	NO	62		<u> </u>		u	-
	DX30	ND	69	<u> </u>			1 (-
	DX31_	No	69				U	
	DX32	NO	74		<u> </u>		1 4	+
	DX33	ND	72				1 11	
MC	<u>DX34</u>	ND	(47)				 U	u/
	1	İ				<u> </u>	<u> </u>	_

-

6 DUPLICATES

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

MCDT85D

Lab Code: ENSECO Case No.: 14399 SAS No.:

SDG No.: MCDT85

Matrix (soil/water): SOIL

Level (low/med): LOW__

% Solids for Sample: 84.5

% Solids for Duplicate: 84.4

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	·····				
33	Control	ga==1 = (g)	Promition to (D) of		
Analyte	Limit	Sample (S) C	Duplicate (D) C	RPD	Q M
Aluminum		16720,5879	12594.2539	28.2	₹ P
Antimony		9.7635 B	6.6112 F		+ P P F
Arsenic	2.4	4.3787	4.4970	2.7	F
Barium	47.3	160.8048	140.2275	13.7	- <u>5 - </u>
Beryllium		0.2367 Ū	0.4752 E	200.0	_ <u>P</u>
Cadmium	1.2	7.1523	5.8675	19.7	* P
Calcium_		23733.8027	21570.4336	9.6	*
Chromium		35.8050	32.5894	9,4	[_[P]
Cobalt		10.2946 B	9.3856 E	9.2	P
Copper		984.9283	242.0126	(121.1)	<u>*</u> P
Iron		25144.0977	26580.3262	5.6	<u> </u> <u>P</u>
Lead		426.6139	713.4216	50.3	* P
Magnesium	1183	4033.6914	4363.2725	7.9	_ P
Manganese		319.7744	329.3943	3.0	_ <u>P</u>
Mercury_		0.3550	0.3550	0.0	_ <u>cv</u>
Nickel		74.0121	70.6810	4.6	_ P
Potassium	1183	1198.6637	981.7111 E	19.9	_ P
Selenium_		0.4734 Ū	0.4734 U	[[_[<u>F</u> [
Silver	2.4	2.5562	1.6771 E	41.5	_ <u>P</u>
Sodium	1183	2935.3457	2097.6858	33.3	
Thallium_		0.2367 U	0.2367 U		_ F
Vanadium_	11.8	27.9995	29.2630	4.4	P P
Zinc		1082.7230	3201.7117	98.9	* P
Cyanide		0.5917 U	0.5917		<u> As</u>
		_ _	l	.	1_1

6 DUPLICATES

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

MCDT85D

Lab Code: ENSECO Case No.: 14399 SAS No.: ____

SDG No.: MCDT85

Matrix (soil/water): SOIL

Level (low/med): LOW_

% Solids for Sample: _84.5

% Solids for Duplicate: 84.4

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	M
Aluminum					<u> </u>		-	
Antimony			_		-		-	
Arsenic			-1		-		-	
Barium			-		-		1-	l — l
Beryllium			_				1-	
Cadmium			-1		-		-	
Calcium			-		1-1		-	
Chromium			-		~-		-	
Cobalt			-		-		1-	
Copper			-		-		-	
Iron	[-1		[-[[[·	
Lead		640.2367	_	633.1361	-	1.1		F
Magnesium			-				-	
Manganese			-1		-	1	-	
Mercury_			-1		-		-	
Nickel			_		-		-	
Potassium			-		-]-	
Selenium			-1		-		-	
Silver					-		-	
Sodium			-				-	
Thallium			-1		-		-	
Vanadium_			-		-	I ———	-	
Zinc			-1		-		-	
Cyanide			-		-		-	
			-		-		-	

8 STANDARD ADDITION RESULTS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT85

Concentration Units: ug/L

			г				,				T
EPA Sample No.	An	0 ADD ABS	1 AI	DD ABS	CON 2	ADD ABS	CON 3 1	ADD ABS	Final Conc.	r	Q
MCDX30 MCDT85D MCDT85 MCDT90 MCDX34	器组出出出	.107 .205 .212 .173 .203	10.00 15.00 15.00 15.00 15.00	.274 .271 .235 .271	20.00 30.00 30.00 30.00 30.00	.336 .342 .304 .312	30,00 45,00 45,00 45,00 45,00	.381 .386 .354 .359	19.5 2680.0 2700.0 85.6 310.0	.9960 .9960 .9980	1
MCDX34	Pb		<u>15.00</u>		30.00		45.00	.369	302.0	.9950 	_ _ _
											 - - -
											- - -
											_ _ _ _

ICP SERIAL DILUTIONS

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

MCDX34L

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT85

Matrix (soil/water): SOIL

Level (low/med): LOW

Concentration Units: ug/L

Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Differ- ence	Q	M	
Aluminum_ Antimony_ Arsenic	25886.11 29.44	B	27327.68 120.00	Ū	5.6 100.0	- - -	P P	σk
Barium Beryllium Cadmium	121.58 1.00 5.00	표 U U	128.95 5.00 25.00	BUU	6.1	- - -	P P	
Calcium_ Chromium_ Cobalt	77846.18 79.40 21.49	У — В	82289.94 83.28 30.00	- 0	5.7 4.9 100.0	1		ا زيد
Copper Iron Lead	336.63 76985.17 2789.28	- - -	358.43 81878.66 2949.08	- - -	6.5 6.4 5.7	 - -		
Magnesium Manganese Mercury	17780.93 478.74	- -	19107.65 508.89	<u>B</u>	7.5 6.3	- -		
Nickel Potassium Selenium	152.87 1895.04	臣	139.30 139.30 139.30 139.30 139.30 139.30	B	8.9 24.7	-		ok
Silver Sodium Thallium	6.00 1100.00	꼬	30.00 5500.00	<u>ש</u>		- -	P P	
Vanadium_ Zinc	246.95 2047.12		261.70 2242.57	<u>-</u>	<u>6.0</u> <u>9.5</u>	- -	P P	

Enseco - Rocky Mountain Analytical Lab Lab 00134 40105 11.00 Mercury Worksheet ST NOARD CONCENTRATION (DDb) READING (mV) SDG No. MCDT85 0,001 Case/SAS No. 14399 BLANK /NA <u>/\$0</u>IL Conc./Matrix LOW SO.2 DiDAD Analyst R. PERSICH. HO SO.5 0,052 Date July 16, 1990 \$1.0 01107 سلوه ور Corr.Coef. \$2.0 LIMS FINAL INITIAL SAMPLE SAMPLE D/F READING CONCENTRATION CONCENTRATION COMMENTS BOTTLE (mV) (daa) ug/L 5 1,01 2:30 5,0 119 ICV 0.102 0,200 12.2010 139 ICB 0.000 1,06 0.108 CCV1 121 210 1) 20m 1 0.24-0.000 CCB1 17 147 0.200 500 PBSS Oilon 0.000 500 62 LCSS 0.99 12. 12500 9 BLANK 0.100 0.56 500 0.30 Within 10 90 MCDT85 0101840001SA (0-05) 0,30 0.59 72 0101840001D 0-060 MCDT85D tob myky pod ten 0101840001S 0-/6J 1,60 0.80 78 MCDT85S 0101840002SA 0.05/ 0.26 97 MCDT86 0.50 ۵.2 ` 0.42 MCDT87 0101840003SA 0.043 0,100 0,202 MCDT90 0101840004SA 0.004 0.457 72 zas MCDX29 0101840005SA 0.073 M 45 0.52 **8**4 MCDX30 0101840006SA 0.104 1,03 1,05 1,0 113 CCV2 0.106 157 n.2a 0.20h CCB2 0.004 ŧ 0,20 500 0.100 MCDX31 0101840007SA 0.014 B.100 0.20-MCDX32 0101840008SA 0.0/8 U MCDX33 0101840009SA|*0.005* 0.20 -D.104 Dilou MCDX34 0101840010SA 0-0/0 0.200 Dillon 127 10105-17 0,200 500 0.006 22 Ad low CU 0.20 a -17D 0.010 68 1.54 0.156 30 -173 211 0.013 D.200 BUOU -18 CCV3 3:00 1.03 CCB3 0.104 1,0 0.000 0.20m سامد ٥

· ·

3 BLANKS

00015

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT88

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank				inuing Cal Blank (ug	/L)		Prepa- ration		
Analyte	(ug/L)	С	1	C	2	C	3	C	Blank	C	M
luminum		-	25.0	Πī		Τ-	T			┰┤	1 5
ntimony_		1-1	24.0	U U		1-		~ -		1-1	P
rsenic		-		*		-		- -		-	-
Barium		-	2.0	Ū		-		-1-1		-	P
Beryllium		-	1.0	Ū		-	1	- -		-	P
Cadmium		1-1	5.0			1-		-1-1	- 	1-1	2
alcium		-	66.0	บิ		1-		- -		-	P
hromium		-	5.0	Ū		1-		- -		-	P
Cobalt		-	6.0	₩.		η-		_ -			P
copper			4.0	Ţ		1_		<u> </u>		1-1	P
ron			22.0	Ū		1=				-	P
Lead			20.0					_			P
agnesium		1_1	76.0	Ū		.1=		_ _			P
langanese		1_1	8.0	U		. _		_1_1		1_1	P
lercury		_		_	! <u></u>	. _		_1_1		_	ا
lickel		_	10.0	U U		.		_ _	l <u></u>	l_	P
otassium		1_1	115.0	<u>U</u>		.1_		_ _		_	<u>P</u>
elenium_		1-1		_		. _		_ _		_	ا ـــا
ilver		_	6.0	ŭ		. _		-1-1		_	P
odium_		<u> </u> _	1100.0	U		. _		-1-1		_	P
hallium		_		=		1_		_ _	<u> </u>	_	l <u>-</u>
/anadium_		_	4.0	שַע		1_]	_]_]]_]	J₽_
inc		-	1.0	<u>u</u>		1-		-1-1		_	Į₽_
yanide		1-1	1.0	N.		1-		_ _			P

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT88

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С	Cor 1	nt:	inuing Cal Blank (ug, 2			С	Prepa- ration Blank C	м
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc			1.0 1.0 1.0 2.0		1.0 1.0 1.0 2.0		1.0 		1.000 Ŭ 1.000 Ŭ 1.000 Ŭ 2.000 Ū	F CV F
Cyanide	10.0	፱	10.0	Ū	10.0	፱		-	10.000	AS

Date Analyzed: <u>07/13/90</u>

4200

860 ٠U

860 10

860 IU

÷υ

(SepF/Cont/Sonc)

1 88-74-4----2-Nitroaniline

1 208-96-8----- Acenaphthylene

: 131-11-3-----Dimethyl Phthalate

Extraction:

CEN79

Lab Name: CLAYTON NOVI Contract: 58-09-0035 Lab Code: CLAYTN Case No.: 14399 SDG No.: CEN76 SAS No.: Matrix: (soil/water) SQIL Lab Sample ID: 830205 Sample wt/vol: 30.0 (g/mL)G Lab File ID: A0013 Level: (low/med) LOW Date Received: 06/28/90 % Moisture: not dec. 53 Date Extracted: 06/28/90 dec. _ 23

6PC Cleanup: (Y/N) <u>Y</u> pH: 5.7 Dilution Factor: 1.0

SONC

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/K6</u> Q

: 108-95-2----Phenol 860 ΙU : 111-44-4-----bis(2-Chloroethyl)Ether 860 ΗU 850 ···U : 541-73-1-----1,3-Dichlorobenzene 860 ΗU : 106-46-7------ ,4-Dichlorobenzene 860 ΗU : 100-51-6-----Benzyl Alcohol ÷υ 860 : 35-50-1-----1,2-Dichlorobenzene 860 : 0 1 35-48-7----2 Mathylphanol 860 ÷υ : 39638-32-9-----bis(2-Chloroisopropyl)Ether__; 860 ΗU | 106-44-5----4-Methylphenol 860 : 0 : 521-64-7----N-Nitrosa-Di-n-Propylamine 850 10 : 67-72-1-----Hexachloroethane 860 ŧυ : 98-95-3-----Nitrobenzene_ 860 ÷υ : 78-59-1-----Isophorone 860 10 1 89-75-5----2-Nitrophenol 860 ٠U 1 105-67-9------2,4-Dimethylphenol 860 ΗU : 65-85-0------Benzoic Acid 4200 ΙU : 111-91-1-----bis(2-Chloroethoxy)Methane 860 ·U : 120-83-2----2,4-Dichlorophenol 860 ΙU 1 120-82-1-----1,2,4-Trichlorobenzene 860 : U : 91-20-3----Naphthalene 860 ٠U : !06-47-8-----4-Chloroaniline 860 ΗU : 87-68-3------Hexachlorobutadiene 860 ÷υ : 59-50-7-----4-Chloro-3-Methylphenol 860 : U : 91-57-6----2-Methylnaphthalene 860 ΗU : 77-47-4-----Hexachlorocyclopentadiene 860 : U : 83-06-2------2,4,6-Trichlorophenol 860 υ / 95 95-4-----2,4,5-Trichlorophenol 4200 : U : 31-58-7----2-Chloronaphthalene 860 ÷υ

CODM T CU

CEN79RE

EPA SAMPLE NO.

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT85

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	Co:	nt:	inuing Cali Blank (ug, 2			С	Prepa- ration Blank	c	м
Aluminum_ Antimony_ Arsenic_ Barium_	1.0	_ 	1.0	_ 	1.0	֡֟֟ ֖֖֖֡	1.0	_ <u>Ū</u>	0.200	_ Ū	<u>F</u>
Beryllium Cadmium Calcium Chromium		1 1 1		- - -		1 1 1		1 1 1		<u>-</u>	
Cobalt Copper Iron Lead	1,0	_ _ _	1.0	_ _ _ _ _	1.0	- <u>u</u>	1.0	_ _ _	0,200	_ _ <u>Ū</u>	 F
Magnesium Manganese Mercury Nickel	0.2	_ _ _	0.2	_ <u>u</u>	0.2	n E	0.2	_ _ 	0.100	_ <u>u</u>	<u>cv</u>
Potassium Selenium_ Silver_ Sodium_	2.0	ᄪ	2.0	<u>च</u> -	2.0	ב ב		1 1 1		<u>u</u>	<u>F</u>
Thallium_ Vanadium_ Zinc_ Cyanide_	1,0	<u>u</u>	1.0	<u>u</u> - <u>u</u>	1.0	ם ו	1.0	<u>u</u> -	[교	F AS

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT85

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	Co1	nt: C	inuing Cal Blank (ug, 2	ib: /L	ration) 3	С	Prepa- ration Blank	С	M
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc			1.0 		1,0		1.0				F F
Cyanide		_		 		_					

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT85

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	C	Coi 1	nt:	inuing Cal Blank (ug 2	ib: /L; C	ration) 3	С	Prepa- ration Blank	С	м
Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium Manganese Mercury_			1.0		1.0						F
NickelPotassiumSeleniumSodiumThalliumVanadiumZincCyanide		1111111				11111111					

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT85

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	Co:	nt: C	inuing Cal Blank (ug, 2	ibi /L	ration) 3	С	Prepa- ration Blank	С	м
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Mercury_ Nickel Potassium Selenium_ Silver_ Sodium Thallium_ Vanadium			2.0		2.0						F.
ZincCyanide		1		_ _ _		- - -		- - -		- - -	

00019

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

MCDT89S

Lab Code: ENSECO

Case No.: 14399

SAS No.: ____

SDG No.: MCDT88

Matrix (soil/water): WATER

Level (low/med): Low

%Solids for Sample : __0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit %R	Spiked S Result		С	Samp Result		С	Spike Added (SA)	₹R	Q	м
Aluminum		13024	3.9766		103635	.9453		SR7114 2000.00	1330.4		Po
Antimony T	75-125	19:	2.7000	_	48	.0000	ן ס	500.00	/38.5	M	P
Arsenic T	75-125		3.4000	B			Ū	40.00	8.5	N N	F
Barium	75-125	3279	9.6399		1272	.3700		2000.00	100.4		P
Beryllium	75-125	14	5.0600	IΞ	93	.1200		50.00	103.9	<u> </u>	P
Cadmium	75-125	6	6.3300		8=17.5 10	.0000	Ū	50.00	439132.7	N	P 1
Calcium		14422	3.0156		139298	.4375					NR
Chromium_	75-125		5.1600		三 万 270	.8800	_	200.00	4-04137.1	N	PU
Cobalt	75-125	131	2.2200		796	.7400	i _	500.00	103.1	_	P .
Copper	75-125	120	1.7500			.7700	 _	250.00	<u>~130.4</u>	N	P d
Iron		56016	B.0000	<u> </u>	441584	<u>.4688</u>	 _	900 A 1000.00	11858.4	_	P *
Lead	75-125	1900	0.8101	_	1364	<u>.1699</u>		500.00	107.3		<u>P</u>
Magnesium		64844	4.3203	_	62754	<u>.6328</u>	 		<u> </u>	_	NR
Manganese:		977	2.7607	_	8946	<u>.8896</u>	l_,	500.00 \$K75A	165.2	_	<u>P_</u> #
Mercury	<u>75−125</u>		1.5000	_		<u>.5000</u>	l_,	1.00	100.0	_	CV
Nickel	<u>75-125</u>		3.7800	_		.3500	1_	500.00	99.3	_	P
Potassium			4.6602	_	<u>62635</u>		_`			\sim	NR_
Selenium_	75-125	<u> </u>	<u>5.7000</u>	_	¥ 20	.0000		10.00	657.0	N.) <u>F</u>
Silver	<u>75-125</u>	3.	<u>7.1800</u>	_	12	.0000	Ш	50.00	74.4	A	P 0#
Sodium		127375	0.2500	_	1262832		 _			_	NR_
Thallium_	<u>75-125</u>		<u>2.6000</u>	B		.0000	U.	50.00	5.2	N	F
Vanadium_	<u>75-125</u>		3.5399	_	(<u>.8100</u>	_	500.00	101 142.5	И	POL
Zinc	·		9.5698	 _		<u>. 6797</u>	_	5R>>> 500.00	<u> </u>	-	P_9
Cyanide_	75-125	100	5.0000	l	10	.0000	֓֞֜֞֞֞֓֓֓֓֓֓֓֓֞֞֞֞	100.00	106.0	_	AS

Comments.

ICP SAMPLE AND SPIKE SAMPLE RESULTS ARE REPORTED AT A 2X DILUTION DUE HIGH CONCENTRATIONS OF SODIUM IN SAMPLES.

high recoveres (one Se) due to accept level of Spl. inhomogeneity for splannits >4 x SA.

FORM V (PART 1) - IN

7/88

* Se - Using mittal SR (71 ug) 1), a 0% recovery is obtained

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090	MCDT89S
SED MAINE. ROCKI MOUNTAIN ANABITICAL CONCLEGE. OF DS-0030	
Lab Code: ENSECO Case No.: 14399 SAS No.:	SDG No.: MCDT88
Matrix (soil/water): WATER Level	(low/med): LOW
%Solids for Sample :0.0_	
Concentration Units (ug/L or mg/kg dry weight):	UG/L

Analyte	Control Limit %R	Spiked Result	Sample (SSR)	С	Sample Result (SR)	C	Spike Added (SA)	₹R	Q	м
Aluminum	[[\top		_			-	
Antimony_						_ _			_	
Arsenic										
Barium				. _		- -			_	
Beryllium			 	. _		- -		l	-	
Cadmium				- -		- -			-	
CalciumChromium	ļ ——- -			\ -		- -		ļ	-	\ —
Cobalt				1-		- -	Î 		-	
Copper				-		- -			-	
Iron						_			-	
Lead		13	00.0000		1657,000		(N 20.00	-1785.0		F
Magnesium				_		_ _			_	
Manganese				-					_	
Mercury]			1-		-1-	\ 	\ 	-	 —
Nickel Potassium				-		-			-	
Selenium				-		- -			-	
Silver			 	1-		-1-	\ 		-	
Sodium									_	
Challium										
Vanadium_				-		- -			-	
Zinc	<u></u>			-1-		_ _	<u> </u>		 	l
Cyanide				-		- -	·		 _	

	ents EAD	RESULT	IS	DETERMINED	BY	MSA.	 	 	-
-									

00021

5B POST DIGEST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

MCDT89A

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT88

Matrix (soil/water): WATER

Level (low/med): LOW

Concentration Units: ug/L

									Γ
Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	C	Spike Added (SA)	%R	Q	M
Aluminum_ Antimony_ Arsenic		237.41	_ I I	48.00	Ī	240.0	98.8	-	NR P NP
Barium Beryllium Cadmium		29,55	1 1	10.00	_ _ _ _	20.0	147.8	- - -	NR NR
Calcium_ Chromium_ Cobalt		777.83	1 1	270.88	_	540.0	93.9	-	NR NR NR P NR P NR
Copper Iron Lead		2564.64		875.77	 - -	1750.0	96.5	-	P NR NR NR NR
Magnesium Manganese Mercury			1 1 1		 - -			<u>-</u>	NR NR NR
Nickel Potassium Selenium_					- - -			<u>-</u>	NR NR NR
Silver Sodium Thallium Vanadium		2545.29	1 1	870.81	- - -	1740.0	96.2	_ _ _	EEEEEEEE
ZincCyanide			1 1		- - -			- -	NR NR

Comments	:							

-				_		 		-
			_			 		
			 			 		

DUPLICATES

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

MCDT89D

SDG No.: MCDT88

Lab Code: ENSECO Case No.: 14399 SAS No.:

Level (low/med): LOW__

Matrix (soil/water): WATER

% Solids for Sample: 0.0

% Solids for Duplicate: __0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	c	RPD	Q	M
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium		Sample (S) 103635,9453 48,0000 1,0000 1,0000 1272,3700 93,1200 10,0000 139298,4375 270,8800 796,7400 875,7700 441584,4688 1364,1699 62754,6328 8946,8896 0,5000 297,3500 62635,4922 20,0000 12,0000		119119.3594 48.0000 3.1000 1251.6300 89.2700 17.5400 130311.1719 337.4100 764.6100 881.2300 531629.6875 1299.1001 58772.4297 8446.3496 0.5000 301.5800 56131.8516 20.0000		RPD 13.9 200.0 1.6 4.2 200.0 6.7 21.9 4.1 0.6 18.5 4.9 6.6 5.8 0.0 1.4 11.0		M DEPENDENDED DE DE DE DE
Thallium_ Vanadium_ Zinc Cyanide		10,0000 870,8100 4771,6797 10,0000	<u>u</u> - <u>u</u>	10.0000 t 1074.5800 4577.9399	<u> </u>	20.9	*	P P AS

00023

6 DUPLICATES EPA SAMPLE NO.

Concentration Units (ug/L or mg/kg dry weight): UG/L

							, ,			_
Analyte	Control Limit	Sample	(S)	c	Duplicate (I) C	RPD	Q	M	
Aluminum				_				-	<u> </u>	l
Antimony_				_		_ _				١
Arsenic				_		__	 		l	
Barium				_		_ _		11_	l'	ĺ
Beryllium		ļ		_		_ _		_		l
Cadmium				-			!!	-	l	l
Calcium_			———I	-1		1-) I —	 	Ì
Chromium_ Cobalt						- -		-	 -	ĺ
Copper				-		-		—		ı
Iron				-[— –	———	—	├	
Lead		1657	7.0000	-	1850.000	<u></u> -	11.0	–	F	ı
Magnesium			10000	-	1000,000	~ ~		-		ľ
Manganese				-		-		–		ĺ
Mercury				-		_\-		11-	\—-	Ì.
Nickel								[] _	J /	ĺ
Potassium								11=		
Selenium_				_	· 	__				
Silver				_		_ _		Í Í 🕳		
Sodium						_		_	J!	ı
Thallium_				-11		_ -		_	ll	ĺ
Vanadium_				- ['				\ \ -		ĺ
Zinc				;		—l—		-		ĺ
Cyanide				-		 [-;		—		
				_!		_ _	l I	l I 🕳	l ——— /	ĺ

8 STANDARD ADDITION RESULTS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT88

Concentration Units: ug/L

EPA Sample No.	An	0 ADD ABS	1 AD	D ABS	CON 2	add Abs	CON 3 1	ADD ABS	Final Conc.	r	Q
MCDT89 MCDT89 MCDT89D MCDT91 MCDT91	超超超超超	0.145 0.145 0.148 0.129 0.125	15.00 15.00 10.00	0.212 0.211 0.174	30.00	$\frac{0.262}{0.253}$	45.00 45.00 45.00 30.00	0.310	1657.0 1850.0	0.9970 0.9960 0.9970]+ -
											1 1 1 1
											-
											-
											_

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT85

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	Co:	nt: C	inuing Cal Blank (ug, 2			С	Prepa- ration Blank C	м
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	2.0 1.0 5.0 66.0 5.0 6.0 4.0 22.0 20.0 76.0 8.0 408.7		25.0 24.0 2.0 1.0 5.0 66.0 5.0 6.0 22.0 20.0 76.0 8.0 10.0 115.0 6.0 1100.0	ा क्रियं व्रवा व्रवावव्रव्यव्यव्यव्या व्रव	25.0 24.0 2.0 1.0 5.0 93.5 5.0 6.0 22.0 20.0 76.0 8.0 10.0 115.0 6.0 4.0 4.8	ा क्रिया त्रता त्रवात्रवात्रवात्रक्षित्र त्र	25.0 24.0 2.0 1.0 5.0 138.8 5.0 4.3 22.0 20.0 76.0 8.0 194.4 6.0 1100.0	। क्रियं वता क्रिया वावविक्रियंत्रक्षां विष	5,000 U 4,800 U 0,400 U 0,200 U 1,000 U 17,564 B 1,000 U 1,200 U 0,800 U 4,400 U 4,000 U 15,200 U 1,600 U 25,971 B 1,200 U 220,000 U 0,800 U	

3 BLANKS

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT85

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	Con 1	nt: C	inuing Cal Blank (ug 2	ib: /L C	ration) 3	С	Prepa- ration Blank	2	м
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Mercury_ Nickel_ Potassium Selenium_ Silver_ Sodium_ Thallium_ Vanadium_ Zinc_ Cyanide_			25.0 24.0 2.0 1.0 5.0 107.7 5.0 6.0 4.0 22.0 20.0 76.0 8.0 100.0 1100.0		6.0 1100.0						

9 ICP SERIAL DILUTIONS

EPA SAMPLE NO.

MCDT91L

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT88

Matrix (soil/water): WATER

Level (low/med): LOW

Concentration Units: ug/L

Analyte	Initial Sample Result (I) C	Serial Dilution Result (S) C	Differ- ence Q M
Aluminum_ Antimony_ Arsenic	92836.91 48.00 U	96483.43 240.00 Ū	3.9 P
Barium Beryllium Cadmium	1039.88 65.86 10.00 Ü	1075.82 B 69.18 U	3.6 5.0 P
Calcium Chromium Cobalt	125737.20 269.95 584.16	130662.70 262.04 619.58	$ \begin{array}{c c} 3.9 \\ \hline 2.9 \\ \hline 6.1 \end{array} $
Copper Iron Lead	659.04 420.11 935.39	701.97 441.87 973.97	5.2 4.1 P
Magnesium Manganese Mercury	59062.11 6944.53	61728.02 7328.87	4.5 5.5 CV
Nickel Potassium Selenium Silver	$ \begin{array}{c c} & 237.40 \\ \hline & 55388.33 \\ \hline & 12.00 \\ \hline \end{array} $	244.21 B 57466.63 U	2.9 3.8 P
SodiumThalliumVanadium	12.00 U 1203428.00 -	60.00 U 1264224.00 -	5.1 P
Zinc	3363.23	3583.47	4.8 6.5

10 Instrument Detection Limits (Quarterly)

Lab	Name:	ROCKY MOUNTA	AIN ANALYTICAL	Contract	68-D9-00	90		
Lab	Code:	ENSECO	Case No.: <u>14399</u>	SAS No.:		SDG	No.:	MCDT88
ICP	ID Num	mber:	<u>JA9000</u>	Date:	07/15/90			
Flan	ne AA]	D Number:	N/A					
Furr	nace AA	ID Number:						

ii					
	Wave-	D1-	ann.	.	
	length	Back-	CRDL	IDL	
Analyte	(שמנו)	ground	(ug/L)	(ug/L)	M
Aluminum	237,31		200	25.0	P
Antimony_	206.84		60	24.0	P
Arsenic			10		
Barium _	233.53		200	2.0	P
Beryllium	313.04		5	1.0	<u>P</u>
Cadmium	228.80		5	5.0	P
Calcium	370.60		5000	66.0	
Chromium	267.72		10	5.0	P
Cobalt	228.62		50_	6.0	P
Copper	324.75		25	4.0	P
Iron	259.84		100	22.0	P
Lead	220.35		3	20.0	P
Magnesium	279.08		<u>500</u> 0	76.0	اماماما
Manganese	294.92		15	8.0	P
Mercury	253.70		0.2	0.1	CV
Nickel	231.60		40	10.0	
Potassium	766.49		<u>50</u> 00	115	P
Selenium_			5		
Silver	328.07		1o	6.0	밀리
Socium	330.24		<u>50</u> 00	1100	<u>P</u>
Thallium_			10		
Vanadium_	292.40		50	4.0	<u>P</u>
Zinc	213.80		20	1.0	P
		. <u></u>			

Comments: SPECTRO PRODUCTS HG-3 SPECT	TROPHOTOMETER.	USED FOR	MANUAL CO	LD VAPOR
DETERMINATION. (INSTRUMENT				
				· ·

10 Instrument Detection Limits (Quarterly)

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT88

ICP ID Number: JA9000 Date: 07/15/90

Flame AA ID Number: N/A

Furnace AA ID Number: PE2380

						•
Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL	M	end AA
Aluminum			200			
Antimony			60			
Arsenic	193.70	BD		2.0	F	1
Barium			200			1
Beryllium			5			
Cadmium	·		5			
Calcium			<u>500</u> 0			
Chromium			10			•
Cobalt			50			
Copper			25			
Iron] 		100			
Lead	283.30	BD	3	1.0	F	
Magnesium		l	5000_			•
Manganese			15			
Mercury_	<u> </u>		0.2			
Nickel			40_			
Potassium			<u>5000</u>			_
Selenium_	196.03	BD	5	2.0	<u>F</u>	2
Silver			10			
Sodium_			_5000_			
Thallium	276.80	BD	10	1.0	F	_
Vanadium_			50			
Zinc	\ 		20			
		l				

]OI	mments: SPECTRO	PRODUCTS	HG-3 S	PECTROPHO	TOMETER	USED	FOR MANUAL	COLD VA	POR
DETERMINATION. (INSTRUMENT B)									

Data Not legented KKO

Enseco-RMAL Se Graphite Furnace Worksheet Page 1 of									l of		
	Project <u>0</u>	10183		SDG		MCDT88	Case/S	AS No.	14331	1/NA	
Analyst EN Date 08/01/90 Matrix/Conc. WATER								WATER			
Instrument 2380E Element Se Background Correction BD											
CALIBRATION INFORMATION: Concentration										Conc	
Calibration Time: 02:47 S 0.0] 0.0	0.000		
Std. Prep Date: 07/31/90					S					058	
Sto	d. Prep Time:	07:30					S 50	0.0		7.6	
1							S 100		95	5.3	
	<u></u>	CONC1	CONC 2				FINAL CONC				
ID		(ppb)		(dqq)	%RSD	DF	ug/L	COM	MENTS	TIME	
	ICA	51.2	52.3	51.8	1.50	1	51.8			02:58	
	ICB	20	20	20	NC			<u>[</u>		03:01	
	CRA	5.8	5.7	5.7	1.07					03:03	
4	CCV1	51.4	52.2		0.98		<u></u>			03:06	
<u>5</u>	CCB1	20	20	20	NC			<u> </u>		03:09	
<u>, 6</u>	PBW	20	20	20	NC	1	20			Ĺ	
<u>7</u>	-	10.5	11.7	11.1	7.41			<u> </u>	111%	L	
	LCSW	48.2	49.6	48.9	1.96	1	48.9			L	
	LCSWA	58.9	58.2		0.84			<u></u>	97%	L	
	MCDT89	75.5	72.3			1	NOT USED	NEEDS	DILUTION	L	
	MCDT89A	69.6	65.6		4.21		L		0%	L	
	MCDT89D	71.2	71.2		0.04	1	NOT USED	NEEDS		L	
	MCDT89DA	71.2	69.1	70.2	2.18			<u></u>	0%	L	
	MCDT89S	55.6	62.1	58.8		1	58.8		(02)		
	CCV2	52.9	51.9	52.4	1.32				\leq	03:36	
	CCB2	20	20	20	NC					03:39	
	MCDT89	3.0	2.5	2.7	13.8	10	(27.0BW			_	
	MCDT89A	10.0	9.7						72%	L	
	MCDT89D	3.0	2.6		10.2	10	28.0BW			<u>L</u>	
	MCDT89DA	9.5	9.3		1.46				66%	-	
	CCV3	49.1	48.4	48.7						03:58	
<u>22</u>	CCB3	20	20	20	NC					04:01	
23										_	
24										<u>`</u>	
25	<u> </u>									-	
26 27		<u> </u>								-	
27										-	
28 29		ļ			_					-	
29								<u> </u>	———— —	-	
30										-	
31		 						<u> </u>		-	
32		 								-	
33										-	
34 35										-	
35						<u></u>	<u> </u>	<u> </u>		-	

En.	seco-RMAL		Se G	raphite	e Fur	nace Worl	<u>ksheet</u>		Page	1 of
	Project 0:	10183		SDG		MCDT88	Case/S	AS No.	1439	9/NA
	Analyst 1	EN		Da	ate <u>0</u>	7/26/90	Matrix	/Conc. W	ATER	
	Instrument	2380E		Eleme	ent S	Bac	kground Corre	ection B	D	1
CA	LIBRATION INFO	ORMATI	ON :		_	_	Concen	tration	Abs./	Conc
Ca.	libration Time	B: 02:2	21				<u>; </u>	0.0	0.0	000
Sto	d. Prep Date:	07/25	79 0				S 1	0.0	0.0	079
	d. Prep Time:						S 50	0.0	4:	1.9
1	-							0.0		1.3
		CONC1	CONC2	AV C.			FINAL CONC			
ID	SAMPLE	(dqq)	(dqq)	(ppb)	%RSD	DF	ug/L	COMM	ENTS	TIME
	ICV	48.6	49.7	49.2		1	49.2			02:31
2	ICB	2U	2U	20	NC			,,,,,		02:34
3	CRA	4.9	4.9		0.18				<u>.</u>	02:37
4	CCV1	51.1	53.2	52.1	2.77					02:40
5	CCB1	20	20	20	NC			<u> </u>		02:42
6		20	20	20	NC	1	20		· · · · · · · · · · · · · · · · · · ·	
7	PBWA	10.4	10.4		0.00			i	104%	Τ
8	LCSW	50.3	52.7	51.5		1	51.5			t
5	LCSWA	66.5	67.7	67.1	1.24				156%	<u> </u>
10	MCDT88	20	20	20	NC	1	2UW			T
$\frac{11}{11}$	MCDT88A	12.8	12.4	12.6					126%	T
12	MCDT89	72.9	69.5	71.2	3.35	1	NOT USED	NEEDS D		<u> </u>
13	MCDT89A	69.8	62.8	66.3	7.49				0%	<u> </u>
14	MCDT89D	67.8	59.9	63.8		1	NOT USED	NEEDS D		t
15	MCDT89DA	64.0	66.8	65.4					16%	<u> </u>
	CCV2_	52.5	52.5		0.03					03:12
17	CCB2	20	20	20	NC					03:15
	MCDT89S	62.4	69.0	65.7		1	65.7		0%	03:17
19	MCDT91	70.7	67.9		2.85	1		NEEDS D		
	MCDT91A	67.3	63.9		3.57				0%	<u> </u>
21	MCDT92	20	2บ	20	NC	1	20			-
	MCDT92A	9.6	9.9	9.7					97%	Ī.
23	MCDT89	20	2.4	20	NC	10	20U			1) sec
24	MCDT89A	11.0	11.8	11.4					114%	
25	MCDT89D	20	20	20	NC	10	200			-//reave
	MCDT89DA	10.6	10.8		1.36			·	107%	,
27	CCV3	52.9	53.6		0.96					03:45
	CCB3	20					. /			03:48
29	MCDT91	2.6	2.9	2.7	6.35	10	/27.0B			
	MCDT91A	11.4	12.0		3.36				90%	
	CCV4	54.6	53.1	53.9	1.98					03:56
	CCB4	20	20	20	NC					03:59
33										
34				_						•
35										-

SAMPLES MOT 90 MOT 90 AE-94

SDG WCOL 82

CRDL STANDARD FOR AA AND ICP

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT85

AA CRDL Standard Source: BAKER

ICP CRDL Standard Source: BAKER

	CRDL S	tandard f	or AA	,	CRDL Stand	dard fo	or ICP Final	
Analyte	True	Found	%R	True	Found	%R	Found	%R
Aluminum_ Antimony_ Arsenic_	10.0	10.40	104.0	120.0	120.70	100.6	117.11	97.6
Barium Beryllium Cadmium Calcium				10.0	9.99 10.33	99.9 103.3	9.58 9.61	95.8 96.1
Chromium_ Cobalt Copper Iron				20.0 100.0 50.0	21.58 106.91 53.24	107.9 106.9 106.5	21.28 102.90 57.40	
Lead_ Magnesium	3.0	1.50	50.0	W212 40.0	28.35	70.9	49.37	123.4
Manganese Mercury				30.0	31.47	104.9	32.25	107.5
Nickel Potassium				80.0	85.75	107.2	84.13	105.2
Selenium_ Silver Sodium	5.0		138.0	20.0	19.13	95.7	19,30	96.5
Thallium_ Vanadium_ Zinc	10.0	10.30	103.0	100.0 40.0	104.82 42.55	104.8 106.4	102.28 42.35	102.3 105.9

2B CRDL STANDARD FOR AA AND ICP

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT85

AA CRDL Standard Source: BAKER

ICP CRDL Standard Source: BAKER

		tandard f			CRDL Stand		Final	
alyte	True	Found	%R	True	Found	₹R	Found	
minum			┯——					1
imony	 -		——					-
enic								-
ium							· · · · · · · · · · · · · · · · · · ·	-
yllium								-
lmium]] []]
cium			1					ľ
omium								-
palt [[ו
pper								
n								[
ad								
nesium								
nganese								
cury								_
ckel			l	li		!1 .		
assium			<u> </u>					
enium_	5.0	<u>5,60</u>	112.0	l1		l .		_
ver				l		ll .		_
ium			[[[l		_
11ium_			ll			ll.		_
adium_			[_ .		_
c []			\	l				_

CRDL STANDARD FOR AA AND ICP

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090 Lab Code: ENSECO

Case No.: 14399 SAS No.: ____ SDG No.: MCDT85 AA CRDL Standard Source: BAKER

ICP CRDL standard Source: BAKER

	Co	oncentr	ation Un	its: ug/L			
Aluminum Antimony Arsenic	RDL Standard frue Found	or AA		CRDL Star Initial Found	dard f	or ICP Final Found	*R
Barium Beryllium Cadmium Calcium Chromium Cobalt Copper ron ead agnesium anganese ercury ickel btassium lenium lver dium allium nadium	4.90	8.0					

4 ICP INTERFERENCE CHECK SAMPLE

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

Lab Code: ENSECO Case No.: 14399 SAS No.: SDG No.: MCDT85

ICP ID Number: JA9000

ICS Source: EPA-LV-1287

	ſ	rue		itial Found	1		Final Found	<u> </u>
3	Sol.	Sol. AB	Sol.	Sol.	4.D	Sol.	Sol. AB	9. D
Analyte	A	AD	A	AB	% R	A	AB	&R
Aluminum	502000	508000	483938	439327.6	86.5	477640	439964.0	86.6
Antimony_			39	46.3		46	56.1	
Arsenic								
Barium		483	10	417.4	86.4	11	424.8	88.0
Beryllium		474	-0	412.5	87.0		428.5	90.4
Cadmium		909	-1	842.5	92.7	2	845.9	93.1
Calcium	506000	516000	498637	456474.6	88.5	500244	464450.4	90.0
Chromium		513	25	426.4	83.1	27	437.4	85.3
Cobalt -		478	4	406.2	85.0	2	415.3	86.9
Copper		534	9	472.3	88.4	9	474.6	88.9
Iron	196000	203000	173383	158849.5	78.3	174523	162540.8	80.1
Lead		4850	9	4227.2	87.2	3	4283.2	88.3
Magnesium	498000	509000	513150	466105.9	91.6	504252	462708.4	90.9
Manganese		531	10	422.0	79.5	9	420.1	79.1
Mercury								
Nickel		916	-0	775.7	84.7		794.0	86.7
Potassium			137	19,1		75	57.4	
Selenium								
Silver -		993		845.5	85.1		843.1	84.9
Sodium			-279	-1406.6		-245	-453.9	
Thallium								
Vanadium_		475	10	436.2	91.8	10	442.6	93.2
Zinc		973	-9	827.4	85.0	-10	832.2	85.5

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

MCDT85S

Lab Code: ENSECO Case No.: 14399 SAS No.: ____ SDG No.: MCDT85

Matrix (soil/water): SOIL

Level (low/med): LOW

%Solids for Sample : 84.5

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Aluminum		10735,2842		16720.5879				1	NR
Antimony_	75-125	71.0049	$I \subseteq I$	9.7635	B	118.34	51.8	$ \overline{N} $	P
Arsenic	75-125	11.5976	1_'	4.3787	$\prod_{i=1}^{n}$	9,47	76.2	7	F
Barium	75-125	560.4064	1_'	160.8048		473.37	84.4	1_'	P
Beryllium		11.2139	1_'	0.2367	፱		94.8	1='	P
Cadmium	75-125	14.9880		1=5.87 7.1523		11.83		N	<u>P</u>
Calcium_	ll	24955.0664	$1 \square'$	23733.8027	.l ′		\subseteq	1=1	NR P
Chromium_	<u>75-125</u>	68.4584	1_'	d-52 № 35.8050	 _'	47.34		N	
Cobalt	<u>75-125</u>	111.2920	1_'	10.2946	B			1_'	<u> P</u>
copper	1	201.6310	1-1	1:242 984.9283	1_'	59.17	-1323.8	1-1	P
Iron	I	19873.3535	1_'	25144.0977	1_'	·		<u>_'</u>	NR P
Lead	75-125	1126.2765	(-)	1=713 426.6139	1-	118.34	5591.2) I	1 <u>P</u>
Magnesium	ł	4502.1948	1_'	4033.6914	1-			[_'	NR.
langanese	75-125	370.2120	1_'	319.7744	1_'	118.34		N	<u>P</u>
ercury_	<u>75−125</u>	0.9467	1_'	0.3550	1_'	0.59	100-3	\bot	CV
Nickel	<u>75-125</u>	141.3804		74.0121	1_'	118.34	56.9	N	P
Potassium	(1113.6906			[_'			K	NR_
elenium_	75-125	1.0414	B		Ѿ		43.9) <u>F</u>
ilver	<u>75-125</u>	11.3867	 '	2.5562	1-	11.83	74.6	N	
sodium	l ————————————————————————————————————	2045.0529	1-	2935,3457	1_'	\ <u></u> '	l	1-1	NR
Thallium_	75-125	10.2959	1-		ᄬ	11.83		1-1	<u>F</u>
Vanadium_	<u>75-125</u>	128.0041	 - '	27.9995	1-	118.34	84.5	1-1	<u>P</u>
Zinc		1475.7349	 _ '	1082.7230		5075A 118.34	332-1	احيا	<u>P</u>
Cyanide	75-125	0.6036	1-	0.5917	ᄪ	0.59 5.92	10.2	$ \mathbf{x} $	AS

Comments:	(la	b added	rougle to	solid spla)
	mn: 370-118-1	52 R	PD(252,319) =	23.2	
	D. 111 (10 = 9		PW 23 011	- /-	

FORM V (PART 1) - IN

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

Lab Na	me:	ROCKY MOUNTA	IN ANALYTICAL	Contract:	68-D9-0090	MCDT85	<u>s</u>
Lab Co	ode:	<u>ENSECO</u>	Case No.: <u>1439</u>	9 SAS No	o.:	SDG No.: M	CDT85
Matrix	(so	il/water): S	OIL		Level	(low/med):	LOW
%Solid	ls fo	r Sample : _	84.5				
		Concentratio	n Units (ug/L	or ma/ka di	rv weight):	MG/KG	

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Result	Sample (SSR)	С	Sample Result (SF	R) C		Spike Added (SA)	₹R	Q	м
Aluminum_ Antimony				<u> </u>			-			 -	
Arsenic Barium				_		_	-			-	=
Beryllium				=		_	: =			- -	
Cadmium				<u> </u>		_ _				_	
Chromium_ Cobalt				_		<u> </u>	_			- -	
Copper				_		-	-	ASS (A		-	<u> </u>
Lead Magnesium		50	1.7751	<u> </u>	640.23	367 _ 	2	R7754 4.73	-2927.3	- -	F
Manganese Mercury				_		_ _	_			 -	
Nickel Potassium				_			=			-	
Selenium_ Silver				_		_ -	-			_	_
Sodium Thallium_				-		_ _	=	·····		_	
Vanadium_ Zinc				_ -		_	-			_	
Cyanide				_		_	<u> </u> -			<u>-</u>	

Con	ments:				

Metals (12, Se, TR, pb)
IDLS 1,2,1,1 rug/l

U= <IDL Graphite Furnace Spike Recovery Evaluation Form Case No.: 14300

	Sample ID	Instr. Level Result	PDS Recovery	Diluted Result	Diluted POS Recovery	MSA Result (if needed)	Final Result Reported	
MCD	T88	ND	119				lü	v
	T89	NO	131				I U	
MCD	T89D	3.1	116				3.1	
MCD	T895	3.5		3,4	_		8.8 %	dL 7
MCD		2.3	112				2.3	L
MCD	T92	ND	110				1140	ł
Į								
MCD	88TC	IND	126				12U-	ţ
	T89	171.2	0	2.7 (10x)	72		27	L
	T89D	63.8	16	2.8 (10r)	66.	· · · · · · · · · · · · · · · · · · ·	28	L
	T895	65.7	-			*	390%	0% v
	T91	69.3	<u>()</u>	27 ×10	90		127	ļ
MCD	T92	NO	97				24	
}		110						
_	<u>88TC</u>	NO			1	<u> </u>	114	
	T89	1,9	<u>O</u>	NO (Jor)	64		jo a	ļ
	T89D	1,8		NO (10x)	65	<u>.</u>	10 U	ļ
	T895	2.5		(3,7 MO,)	/ -	<u>.</u>	372	ļ
	T91	1.8	0	NO()ex)	63	 	10 U	ļ
MCD	T92	NO	106			······································	14	}
			~ 0	-			7 /	10
	T88	3,6	89				3.6	
	T89	h-,	hi	603x20	122	1657	(1360	136
	T89D	h _i	hi	63.5 x 20	128	1850	(1300	130
	T895	<u> </u>	<u> </u>	65.2x20				P=30
	T91	<u> </u>	<u>hi</u>	49x20	124	1208 (935	723
WCD	T92	NO	1) [Tu v]
L					<u>_</u>	TOPAG	and a fe from	$ L_{ } $

TCP reported for motog, 89 Dup, 89 SP. + 91

Metal pp, Th

IDL , I ugl

U= < IDL Graphi

Case No.: 14399

Graphite Furnace Spike Recovery Evaluation Form

							<u> </u>	,
	Sample ID	Instr. Level Result 119/1	PDS Recovery	Diluted Result الرابد	Diluted PB Recovery	MSA Result (if needed)	Final Result Reported Walta	KP
MCI	OT85	hi	hi	36.7x50	118	2700= 640 mg	(427.	427
MCI	T85D	hi'	h.'	36.5 x50	116	2680 = 635 mg	713	7)/3
MCI	T85S	bi	<i>'</i> 01	42.4 150		J	-	3502
MCI	T86	61	hi	44×20	105		117 (376	(376)
MCI	T87	6	6,	54.9 ×20	112-		265 (291	1291
MCI)T90	58,4	54	54.7 (July)	82	85.6	(22.3)	15.5,
MCI)X29	chi	Sui	33.1x50	101		360 (296)	296
)X30	hi'	hi	64.6x50	94		762 ZOW	2000
)X31	di	hi	33.3×10	88		73 (83.3)	83.3
)X32	. hi	chi	34.3×10	102		85 (58.1 4	58.1
)X33	26.9	88		·	0. (5%)	647	13.0
MCI)X34	hi	Mi.	31.7×10	116	30 à-	66 (614	6/4).
							-	
		1 () 2			, ,		<i>C</i> 4	
	T85	ND	jol				<u> </u>	•
)T85D	<u> </u>	101				0.70	•
	T855	43.6	0.5		<u>"</u>		8790	
	T86	NO	92				V	
	OT87	NV	112		<u> </u>			
)T90	NO NO	113				<i>i</i>	
)X29	NO NO	102					
)X30)X31	NO			·			
		NO	102			·		
)X32)X33	NO	110					
)X34	NO NO)) <u>2</u>					
HC1	<u> </u>	יעט	92					

1

POST DIGEST SPIKE SAMPLE RECOVERY

		A	
EPA S	AMPLE	NO	•

Lab Name: ROCKY MOUNTAIN ANALYTICAL Contract: 68-D9-0090

MCDT85A

Lab Code: ENSECO

Case No.: 14399 SAS No.: ____ SDG No.: MCDT85

Matrix (soil/water): SOIL

Level (low/med): LOW

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Aluminum_ Antimony_ Arsenic		132.26	=	41.25	B	120.0	75.8	- - -	NR P NR
Barium Beryllium Cadmium Calcium		86.37	_ _ _	30.22	- - -	60.0	93.6	- - -	NR NR NR P NR
Chromium_ Cobalt Copper Iron		411.19		151.28		305.0	85.2	_ 	P NR NR NR P NR
Lead Magnesium Manganese Mercury		3729.40		1802.44	_ _ _	2700.0	91.7	<u>-</u>	P NR P NR P
Nickel Potassium Selenium Silver		353.51		312.70	_ _ _	60.0	68.0	<u>-</u>	P NR NR NR
Sodium Thallium Vanadium Zinc			- -		_ _ _				NR NR NR NR NR NR NR
Cyanide		196.00	_	10.00	Ū	200.0	98.0	_	AS

COm	ments:				
		·	 		_
		 			_

SEMIVOLA ORGANICS ANAL	YSIS DATA SHEET	L. AMPEL	Ern sAMPLE n
		: CEN79	CEN79RE
lame: CLAYTON NOVI	Contract: <u>68-09-003</u>	5_	1
Code: <u>CLAYIN</u> Case No.: <u>14399</u>	5AS No.:	SDG No.: CEN75	SDG No.: <u>CEN76</u>
x: (soil/water) <u>SOIL</u>	Lab Sample	ID: 830205	ID: <u>830205</u>
le wt/vol: <u>30.0</u> (g/mL) <u>6</u>	Lab File II	D: <u>A0013</u>	: <u>A0021</u>
: (low/med) <u>LOW</u>	Date Recen	ved: <u>06/28/90</u>	ed: <u>06/28/90</u>
sture: not dec. <u>53</u> dec		cted: <u>06/28/90</u>	ted: <u>06/28/90</u>
ection: (SepF/Cont/Sonc) §	SONC Date Analy	zed: <u>07/13/90</u>	ed: <u>07/13/90</u>
Cleanup: (Y/N) Y pH:	5.7 Dilution F	actor: 1.0	ctor: 1.0
CAS NO. COMPOUND	CONCENTRATION UN (ug/L or ug/Kg) !		TS: 6/K6 Q
1			
99-09-23-Nitroanilir	ne !	4200 IU I	4290 U
1 83-32-9Acenaphthene_		860 IU :	960 IU
1 51-28-52,4-Dinitroph	neno!	4200 10 1	4290 U
100-02-74-Nitrophenol	, , , , , , , , , , , , , , , , , , , ,	4200 IU I	4200 IU
1 132-64-9Dibenzofuran_	•	860 IU I	860 10
		860 :U :	860 10
121-14-22,4-Dinitroto	ordene		
84-66-2Diethylphthal		860 (U)	860 10
1 7005-72-34-Chloropheny		860 :U :	860 10
86-73-7		860 (U (860 IU
100-10-64-Nitroanilir		4200 IU I	4200 10 1
534-52-14,6-Dinitro-3		4200 IU :	‡ 4200 IU ;
86-30-6N-Nitrosodiph	· —	860 IU I	860 10
101-55-34-Bromopheny		860 IU I	; 860 IU I
: 118-74-1Hexachlorober	nzene	860 tU t	860 IU 1
87-86-5Pentachloroph		4200 (U	4200 IU /I
85-01-8Phenanthrene		630 IJ	780 1
120-12-7Anthracene		170 IJ / I	170 1
84-74-2Di-n-Butylph		860 IU I	860 10 / 1
206-44-0Fluoranthena_		720 IJ I	930 1 /
129-00-0Pyrene	<u> </u>	1100	1400
: 85-68-7Butylbenzylph		860 !U	860 IU 1
: 91-94-13,3'-Dichlore		1700 (U	1700 10
1 56-55-3Benzo(a)Anthr	racene	440 IJ / I	500 11
218-01-9Chrysene		450 J //	860 IU
1 117-81-7bis(2-Ethylhe		1100 BV	1300 IB
		960 IU I	860 IU / I
: 205-99-2Benzo(b)Fluor		650 (J ;	1100 1 🗸 🚶
2 07-08- 9Benzo(k)Fluor		310 (J Z)	860 IU I
1 50-32-8Benzo(a)Pycer		460 J	860 IU
1 193-39-5Indeno(1,2,3		250 IJ V I	240 IJ I
: 53~70-3Dibenz(a,h)A	nthracene	850 (U)	860 IU / I
1 191-24-2Benzo(g,h,1)	Parvlene	150 ¦J ;	329 1

EPA SAMPLE NO.

EPA SAMPLE NO.

VOLATILE ORGANICS	ANALYSIS DATA SHEET		·
-t Name OLAYTON NOUT	C4 4	CEN76	CEN76RE
ab Name: <u>CLAYTON NOVI</u>	Contract: 68-05-003	2 ''	'
_ab Code: <u>CLAYTN</u>	14399 SAS No.:	SDG No.: CEN76	6 No.: CEN75
Matrix: (soil/water) <u>SOIL</u>	Lab Sample	1D: <u>830235</u>	: <u>830235</u>
Sample wt/vol: <u>5.0</u> (g	/mL) <u>G</u> Lab File I	D: <u>E0917</u>	E0926
_evel: (low/med) <u>LOW</u>	Oate Recei	ved: <u>06/28/90</u>	: <u>06/28/90</u>
Moisture: not dec7	Date Analy	zed: <u>07/06/90</u>	: <u>07/07/90</u>
Column: (pack/cap) <u>PACK</u>	Dilution F	actor: 1.0	or: 1.0
	CONCENTRATION UN	IITS:	:
CAS NO. COMPOUN		_	<u>ke</u> c
74-87-3Chlorom	1	1 I	11 10 1
74-87-3Bromome		11 10 1	11 10 1
1 75-01-4		11 iU i #	111 10
75-00-3Chloroe		11 10 /1	11 10
		36 IB / I	36 IB ./ I
1 75-09-2Methyle		16 IB I Q46	11 10
: 67-64-1Acetone		85 🗸	58
75-15-0Carbon			5 IU 1
1 75-35-41,1-Dic			1 5 10 1
75-35-31,1-Did		5 (U) 5 (U)	5 (0
540-59-01,2-0ic			5 (0
1 67-66-3Chlorof		_	5 10
1 107-06-21,2-Dia		5 10 1	11 10
: 78-93-32-Butar		11	
1 71-55-61,1,1~1		5 10 1	5 10
: 56-23-5Carbon		5 10 1	5 10 1
108-05-4Uinyl f		11 10 1	11 10 1
1 75-27-4Bromodi		5 10 1	5 IU !
1 78-87-51,2-Dic		5 10 1	5 10 1
1 10061-01-5cis-1,3		5 IU I	5 10 1
1 79-01-6Trichlo		5 10 1	5 10 1
124-48-1Dibromo		5 IU 1	5 10 1
1 79-00-51,1,2-1		5 10 1	5 10 1
: 71-43-2Benzene		5 (0 (5 10 1
10061 -0 2-6Trans-	•	5 (U)	5 (U 1
1 75-25-2Bromofo	· · · · · · · · · · · · · · · · · · ·	5 IU I	5 10 1
1 108-10-14-Methy		11 10 1	11 10 1
: 591-78-62-Hexar		11 U	11 10 1
127-18-4Tetracl		5 10 1	5 (0 1
: 79-34-51,1,2,3	Z-Tetrachloroethane	5 10 / 1	5 (0)
108-88-3Toluene		19 /	
1 08-90- 7Chlorol		5 10 1	5 10 1
100-41-4EthyIbe	enzeneI	S (U I	5 1U /
: 100-42-5Styrend		2 J 48B	, S 10 √ 1
: 1330-20-7 Total	Xylenes!	.5 (U !	5 ¦V ¦

EPA SAMPLE NO.

EPA SAMPLE NO.

: CEN77

Lab Name: CLAYTON NOVI Contract: <u>68-09-0035</u>

96 No.: CEN76

: CEN770L

Matrix: (soil/water) SOIL

Lab Sample ID: <u>830237</u>

E0918

J: <u>830238</u>

Lab File ID:

E0938

Level: (low/med) LOW_

Date Received: <u>06/28/90</u>

#: <u>06/28/90</u>

% Moisture: not dec. __15

Date Analyzed: <u>07/06/90</u>

4: <u>07/07/90</u>

Column: (pack/cap) PACK

Dilution Factor: 1.0

or: <u>1.0</u>

	CONCENTRATION UNITS:								
CAS NO.	COMPOUND	(ug/L or	ug/Kg) (16\K6	Q		<u> K</u> 6	Q	
			1		1	- ;		1	1
	Chloromethane	· · · · · · · · · · · · · · · · · · ·		12	łŲ	i	24	I U	I .
74-83-9	Bromomethane		;	12	ŧ U	1	24	IU	
75-01-4	Vinyl Chloride_		{	12	l U	1	24	10	•
75-00-3	Chloroethane		;	12	10	1	24	10 /	•
75-09-2	Methylene Chlor	i de	;	71_	滇	1	380	JAO V x	
67-64-1	Acetone		!	130	18		110	180 🏑	‡: ≯
75-15-0	Carbon Disulfid	e		280	!E		280	iD ·	t
	1,1-Dichloroeth			6	١U	1	12	10	1
	1,1-Dichloroeth			6	łU	;	12	lU	1
	1,2-Dichloroeth			6	۱U	}	12	IU	1
				6	١U	1	12	10	I
107-06-2	1,2-Dichloroeth			6	10	1	12	ŧυ	i
78-93-3	2-Butanone		:	12	ΙU	ł	24	ł U	1
: 71-55 - 6	1,1,1-Trichloro	ethane	1	6	١U	1	12	IU	1
	Carbon Tetrachl			6	10	1	12	IU	l .
	Vinyl Acetate			12	10	1	24	: U	ł
	Bromodichlorome			6	ŧŪ	1	12	IU	1
	1,2-Oichloropro			6	10	:	12	IU	1
	cis-1,3-Dichlor			6		j	12	IU	1
79-01-6	Trichloroethene			3	IJ	/ +	12	. IU	1
	Dibromochlorome			6	ΙÜ	1	12	ŧU.	1
	1,1,2-Trichloro			6	1 U	1	12	IU	1
71-43-2				6	l U	:	12	IU	1
	Trans-1,3-Dichl	oconconene		6	;U	:	12	I U	I
75-25-2	Bromoform	o. op. op		6	10	1	12	10	I
	4-Methyl-2-Pent			12	10	!	24	ΙU	1
	2-Hexanone			12	lu	į	24	10	ار
! 127-18-4	Tetrachioroethe		—;	50	1		52	10 1/	1
	1,1,2,2-Tetrach					:	12	IU	:
	Toluene			_		/	55	10	1 .
	Chlorobenzene_						12	IÜ	1
190-41-4	Ethylbenzene		- ;	3		/	12	ΙU	-
100-42-5	Styrene			17	سبب. هدو ار د	7 688	12	l D	IGBB
1330-20-7	Yotal Xylenes_	 -		; 7			13	10	1
	Jores Wishes			· 15 ·				1	,

14399 • 3 -200-01

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name: CLAYTON NOVI Contract: 68-D9-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: SDG No.: CEN76

1	EPA	ł	\$1	1	S2	- 1	53	1	S4	1	S5	- 1	56	10	THER	17	ΟT	1
	IPLE NO.				-											10	•	•
= = = =																		
01:CENS	0	ŀ	39	ł	45	ŧ	96	ł	(23)	<i>)</i>	42	ļ	63	1		í	0	ì
02:SBLK	W 1	ł	38	;	47	;	87	1	20	;	38	;	41	!		ļ	0	ł
1		ļ		- !		ł		}		1		- 1		1		;		}

				Q	C LIMITS
S 1	(NBZ)	=	Nitrobenzene-d5	(35-114)
S 2	(FBP)	3	2-fluorobiphenyl	(43-116)
S3	(TPH)	=	Temphenyl	(33-141)
S4	(PHL)	*	Phenol-d5	(10-94)
S 5	(ZFP)	#	2-Fluorophenol	(21-100)
SB	(TBP)	*	2.4.6-Tribromophenol	(10-123)

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogates diluted out

20

SOIL SEMIUGLATILE SURROGATE RECOVERY

Lab Name: CLAYTON NOUI Contract: 68-09-0035

Lab Code: CLAYTN Case No.: 14399 SAS No.: SDG No.: CEN76

Level:(low/med) MED____

; EPA	1	Si		52	l	53	1	54	1	S 5	- 1	\$6	101	HER	7	TOT	- ;
: SAMPLE N	10.	(NB Z) #1	(FBP)#1	(TPH)#¦(PHL	*:(2FP:	#1(TBP :	#1) (TUC	1
*******	:=== {				== :				-		= =	***			: =	===	r f
01:CEN83	;	58	I I	64	1	69	1	57	!	67	1	83	;		t	0	}
02 CEN83MS	1	56	1	86	1	75	1	56	1	65	1	70	}		1	0	;
03:CEN83MSD	1	56	1	58	;	70	!	49	1	55	:	62	;		1	Ø	1
Ø4:SBLKM1	1	58	1	66	+	89	;	61	1	68	1	74	{		ł	Ø	ļ
}	;		;		†		;		-		1		;		;		ŧ

	QC LIMITS
S1 (NBZ) = Nitrobenzene-d5	(23-120)
S2 (FBP) = 2-Fluorobiphenyl	(30-115)
S3 (TPH) = Terphenyl	(18-137)
S4 (PHL) = Phenol-d5	(24-113)
S5 (2FP) = 2-Fluorophenol	(25-121)
S5 (TBP) = 2.4.6-Tribromophenol	(19-122)

OK

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D Surrogates diluted out